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This paper proposes a structure for a compound linear machine as
a solution to the problem of learning in machine game playing. A
possible algorithm for training the two machines is involved. An at-
tempt to use a compound machine for choosing chess moves is reported
on. Chapter II briefly presents the background concepts in pattern
recognition and machine game playing that underlie the work done.
Chapter III presents a proposed structure for a compound linear machine
that should be capable of learning in game playing. The general
rationale for the proposal is presented also. Chapter IV discusses
a possible algorithm for training the compound machine proposed. The
rationale for each step of the algorithm is discussed. The game of
tic-tac-toe is used as an example in explaining each step. Chapter V
compares and contrasts the linear machine approach with other approaches
to game playing. Chapter VI presents an attempt to apply the proposal
and associated training algorithm to the game of chess. Conclusions
and recommendations are given in Chapter VII. Appendices contain sup-

portive material and data on work performed.
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I. Introduction

Historical and Current Motivation for Machine Game Playing

Playing games by machine has historically been a major area of
study under the general topic of machine thought (Uhr, 1973:193-203).
The literature on this topic contains many examples of programs or
algorithms that play games. The most significant of these is usually
held to be A. Samuel's checker playing program because it is probably
the first and most successful program that "learned" by improving its

play through at least partially self-directed modification (Uhr, 1973:

206-7; Nilsson, 1971:151; Slagle, 1971:21-5; Samuel, 1959; Samuel, 1967).

This paper proposes the use of linear discriminants as a method by
which a machine might learn its own evaluation functions for game
playing.

Before proceeding, it may help to note the importance of machine
playing for the reader unfamiliar with, or skeptical about the practi-
cality of such study. Machine game playing is one of the major areas
in which modeling or replication of the human thought process has been
explored (Uhr, 1973:193, 210; Jackson, 1974:171-65). The conjecture
in such study is that the lessons learned in the comparatively tracta-
ble problem of game playing may find application in solving "real"
problems (Slagle, 1971:8). It is certainly true that many of the tech-
niques of game playing have much broader application (Slagle, 1971);
Nilsson, 1971; Uhr, 1973; Jackson, 1974). Lending credence to this
viewpoint is the fact that recent attempts at modeling the decisions of
military commanders have included use of techniques explored by Samuel

in his checker playing program (GRC, 1978:54-72). Another related study
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performed for the Air Force recommends researching computerized decision
making representations in the realm of artificial intelligence

( MITRE , 1979:ix).

Linear Discriminants and Game Playing

It has been conjectured that a solution to the learning problem in
machine game playing, that is the development of a decision procedure
or criterion by the game playing machine itself, could be effectively
implemented as a search for classes of game positions. These classes
would have the property that for each member of any specific class, a
linear static evaluation function associated with the class could be
used to choose the best next position from all possible next positions
(Carl, 1976). This paper proposes a structure for a compound linear
machine as an imp]ementatioﬁ of this conjecture and further presents a
possible algorithm for training the two machines involved. An attempt

to use a compound machine for choosing chess moves is reported on.

Structure of Presentation

Chapter II briefly presents the background concepts in pattern
recognition and machine game playing that underlie the work done in
later chapters. Chapter III presents a proposed structure for a com-
pound linear machine that should be capable of learning in game playing.
The general rationale for the proposal is presented also. Chapter IV
discusses a possible algorithm for training the compound machine
described in Chapter III. The rationale for each step is discussed
in detail. The game of tic-tac-toe is used as an example in explaining
each step of the algorithm. Chapter V compares and contrasts the

linear machine approach with other approaches to game playing.




Chapter VI presents an attempt to apply the proposal and associated
training algorithm to the game of chess. Conclusions and recommendations
are given in Chapter VII. Appendices contain supportive material and

data on work performed.




IT. Concepts in Pattern Recognition and Game Playing

Patterns and Linear Discrimination

The general theory of linear discriminants has an extensive lit-
erature (Nilsson, 1965; Duda, 1973; Minsky, 1969). The purpose of the
following discussion is to present thefbasic concepts underlying the
use of linear discriminantf in this project and to present the nota-
tion to bé used. For a more detailed discussion the reader is directed
to the references.

The presentation will briefly cover pattern representation, dis;
criminant function definition, linear separability and linear dis-
criminant functions, generalized discriminant functions, and augmented
pattern vectors and weight space. The terminology will mimic that of
Duda and Hart {Duda, 1973) and Nilsson (Ni]éson, 1965). A brief com-
parison to the terminology used in an artificial intelligence text
referenced in this work (Slagle, 1971) will close the discussion for
any reader more familiar with that text's approach. The discussion
is intended to be more informative than rigorous.

Let X be a set of d-dimensional vectors representing patterns of
an arbitrary field of interest. Any district member X of X has the
ordered d-tuple form usually associated with vectors and we write
X! = (xy> X2, . . ., x4), where the xi's (1 < i < d) are usually
termed features. Consider a collection of r subsets of X, with members
€1, C2, . . . Cp such that CiuCj = ¢ for all i, j. These subsets of X

will be called classes. It should be apparent that the set X can be




represented as points in a d-dimensional Euchidean space. Such repre-

sentation is called a pattern space (Nilsson, 1965:8).

Let 91(x), g2(x), . . ., gp(X) be scalar single-valued functions
of a pattern vector x, an element of X. If these functions are chosen
in such a way that gj(x) > gj(x) for 1 < i, j <r, i # j whenever

x e Ci, then we call them discriminant functions (Nilsson, 1965:6;

Duda, 1973:17). This paper is concerned with a particular type of
discriminant function termed a linear discriminant function, which
will now be defined along with associated terms.

Consider a family of discriminant functions of the form

Wi X§ + W44 = WX + Wg+] (1)

Mo
—

g(x) =
1

where the wi's are real coefficients and the x is a pattern vector.

Such functions are linear discriminant functions. The w associated

with each function is termed a weight (or coefficient) vector and

Wg+1 is termed the threshold weight (Nilsson, 1965:16; Duda, 1973:131).

If we can find a set of r such gj(x)'s, each associated with Cj such
that gj(x) > gj(x), i # j, for a1l x contained in Cj, then the r classes

C; to Cp are said to be linearly separable and the classification per-

formed by the discriminant functions is a linear classification

(Niisson, 1965:20; Duda, 1973:131, 138). .The set of r such functions

used as a classifier is termed a linear machine (Duda, 1973:135).

Discriminant functions are extensible to more general cases
(Nilsson, 1965:30; Duda, 1973:135). Consider the family functions known

as linear ¢-functions of the form

o(x) =i'§] wifi(X) + wpey (2)

= ——-




where each fi(x), i =1, ..., m is a single-valued function of x. Al-
though the notation may be questionable, note that each evaluation of
fi(x)is a scalar value and that therefore one can write ?&T = (f1(x),

fa(x), . . . fp(x)). Then equation 2 may now be written as
o(X) = WT?X + Woy , (3)

which still has a weight vector and threshold weight. The difference
is that the pattern vector x is mapped by the fij(x) i =1, . . ., m
functions into a vector of resultant values that is used by the ¢-
function to achieve discrimination., The definition of linear separa-
bility extends to this case where the roles formerly played by
functions gi(x) are now played by function ¢;(x), i = 1, «coom
(Nilsson, 1965:30-31). Although the dimension of ¢ need not equal
the dimension of x (i.e., it is not necessary that d = m), this is of
no consequence since the concern is now with separability in the
$~-space.

The work presented in this paper makes use of augmented pattern
vectors represented in a weight space. These terms are defined as
follows. Consider the formulation of a discriminant function g(x) =
WX + Wgs1, W and X of dimension d. Now consider a formulation of two
vectors such that y* = (xt, 1) and at = (W%, wyyq). The vector y is

an augmented pattern vector and the vector a is an augmented weight

vector. The vectors a and y are points in a space of dimension d+1
| that is termed the weight space (Nilsson, 1965:66-8; Duda, 1973:138).
If a new function g(y) is defined such that g(y) = Eti then it is
apparent that

_ 4+ d
g(y) = aty = iflaiyi = if_]wixi + (wgs+y1) (1) (4)
6
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and that the formulation of g(y) is equivalent to the previously
presented g(x). It follows that linear separability in one formulation
implies linear separability in the other (Nilsson, 1965:65; Duda, 1973:
138). This augmentation is also extensible to ¢-functions in a similar
manner.

The primary advantage of this formulation is that in trying to
find linear discriminant functions in practice, the problem is reduced
from one of looking for both a weight vector w and threshold weight
Wd+], to one of looking for a single augmented weight vector a
(Duda, 1973:138).

The work described in this paper uses linear machines composed of
¢-functions. The linear machines are initially determined by use of
a training algorithm that executes on a weight space representation of
pre-selected pattern vectors (a training set). Further definition
and discussion of these concepts will be postponed until discussion of
the approach and methods employed in the project.

As a closing note on the general terminology of linear dis-
criminants, a parallelism with the notation of Slagle (Slagle, 1971:
143-62) will be noted. Slagle defines a linear evaluation function
as a function of the form € - Y where Y is an n-dimensional feature

-,
(pattern) vector and C is a coefficient (weight) vector. These terms

are the equivalent of the augmented d+1 dimensional pattern vector and
feature vector, where C = d and Yt = (X, 1). Slagle's dimension n is
equivalent to the augmented dimension d+1.

Slagle's approach is to define the separating of m classes in n-1
space as the m,(n-1) pattern problem. This is equivalent to separating

m classes of un-augmented pattern vectors in d-space where obviously




d

n-1. Slagle then shows that finding a solution to the m,(n-1)
pattern problem can be transformed into a problem of finding a solution
in an m,n-half-space problem. This latter is equivalent to finding
separating functions for augmented pattern vectors in augmented

pattern or weight space.

Game State Spaces, Game Trees, and Evaluation Functions

In addition to a representation of a game playing technique, a
general representation of a game is needed. This section offers
definitions for the most common representation of a game, that of a
state space graph or its associated game tree (Nilsson, 1971:18-23;
Slagle, 1971:4-6; Uhr, 1973:193-6; Jackson, 1974:82-4, 119-24).
Evaluation functions for games will also be addressed. The notation
used is due to Jackson but is very similar to that used by Nilsson.

A state is a description of an object or condition. An operator
is a finitely describable means of transforming one state into

another. A state space description specifies a set S of starting

nodes, a set F of operators that transform one state into another,

and a set G of desired end states (goals). A solution or solution

path is specified by a possible starting node (some s an element of S),
2 desired end or goal state (some g an element of G), and a finite
sequence of operators from F that transforms s to g (Jackson, 1974:
82-4). A form or expression containing variables, into which members
of S may be substituted, and used to describe states is a state

description schema (Nilsson, 1971:35). Although one has not been

defined explicitly, there must obviously be some underlying set of S
and G containing all possible states in the state space. Label this

set C, denoting a complete set of states.




In a game state space, the set C of all possible nodes (states)
contains the set of all possible board or game positions. The arcs
or paths connecting states are the possible moves leading from one
board position to another. The operators that transform one state
to another are the rules describing legal moves in the game. The set
S of starting nodes would contain all possible starting board posi-
tions and the set G of goal nodes would contain all board positions
for which it can be said that one side pas won according to the rules
of the game (Jackson, 1974:119). Note that the members of S and G
will be determined by the rules of the games. Also, when a player
resigns or concedes in a game because he feels he will lose, the state
of the game at such time probably will not be contained in the strictly
defined goal set G. Such situations can be easily handled if a
"resign" operator is defined which transforms any state to a goal
state.

Nilsson points out that a state space graph may be presented
either explicitly or implicitly. In the explicit graph specification,
the nodes and arcs are drawn physically or presented in a table. In
the implicit specification only the set S and the set F for generating
successive nodes are given (Nilsson, 1971:21-2).

In actually playing a game use is usually made of an alternate
representation of the state space, a game tree. A game tree contains
as its root some element of S. The branches from this start node to
nodes in the next level represent the possible moves from the start
node and each resultant node represents a board position reachable
from the start node. Each node {s expanded in turn to board positions

that can be reached from it. The moves are usually left implicitly
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specified by comparison of one board to another. It is usual to move
down the tree as the game progresses, with each change of level repre-
senting a possible move by an appropriate player (Jackson, 1974:124;
Slagle, 1971:4-6; Nilsson, 1971:110, 136-49). As with state spaces,
game trees may be given either implicitly or explicitly (Slagle,
1971:5).
The following more formal definitions for a tree are due to
Knuth (Knuth, 1973:305-6). A tree is defined as a finite set of nodes
T such that:
a. There is one node in the tree specifically designated
and called the root of T; and
b. The remaining nodes in T, excluding the root, are
partitioned into m > O distinct sets Ty, . . ., Tp,
each of which is a tree.
Note that each T3, i =1, . . ., m is a proper subset of T. Each Tj
is a subtree of the tree T. The recursiveness of this definition is
especially appropriate for game trees, since in searching for a move
in a game tree it is customary to expand from the current board posi-
tion to succeeding moves and to expand each of them in turn. A subtree
is thus expanded at each level of a move search. In practice the
search is often halted before the lower-most level of a subtree is
reached so that in fact a partial subtree is expanded. This is a
minor variance in terms of definition.
State space graphs or trees are probably often picked as repre-
sentations for games because for many people they seem to be a natural
(Uhr claims the most natural) representation for the problem in terms

of modeling human intelligence (Uhr, 1973:196). But even given the

10




model and a method of manipulating it, a machine must somehow pick its
way through the model. For most "interesting” games the model may
contain a very high number of nodes. For instance, estimates of
1078 possible plays in checkers, 10120 possible plays in chess, and
10720 possible plays in the Oriental game of Go have been made by
individuals who have written on machine play of these games (Jackson,
1974:125). We therefore introduce the concept of an evaluation func-
tion to be used by a machine in picking possible moves in a game.

A complete evaluation of possible plays from a given game
position, as made by a machine, usually consists of the generation
of a partial game subtree from the current position with this being
used in concert with a static evaluation function that assigns a
value (computes some measure of goodness) to board positions (Nilsson,
1971:137-40; Slagle, 1971:9-12, 143-60; Jackson, 1974:129). The func-
tion is usually formulated in such a way that it measures the potential
of the position as part of the evaluation. The use of the function
in a partial subtree search is then a substitute for a complete search
of the subtree emanating from the current position (Nilsson, 1971:
43-77; Jackson, 1974:129-34; Uhr, 1973:197, 200; Slagle, 1971:13-20).
Further discussion of the use of static evaluation functions will be
delayed until discussion of proposed and current game playing tech-
niques. The interested reader may find a finely detailed description
of the role and nature of these functions in Nilsson (Nilsson, 1971:

43-77).

n
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II1. Proposal for A Compound Linear Machine for Game Playing

Patterns and Game Playing

The following discussion draws upon analyses of how human beings
make evaluations and decisions while playing chess. Chess is the basis
of the discussion because it seems to be the game most studied for
purposes of gaining knowledge about human thought in game playing. The
discussion could be extended to any game that has a complexity on the
same level (or lower) as chess. The purpose of the discussion is to
present the rationale for the succeeding proposal for the use of
linear discriminants in game playing.

The basis for proposing pattern recognition as an approach to
machine game playing is that successful human chess players apparently
look for key features that indicate what type of position currently
exists on the board and proceed with play based upon an evaluation of
these features (Charness, 1978; Hearst, 1978). Such an evaluation
indicates a pattern recognition and classification procedure is some-
how used. The specific rationale for using linear discriminants to
model the procedure is covered in Chapter IV. Following is a more
detailed statement of the apparent use of pattern recognition by
humans (and hence the rationale for use of pattern recognition in
machine game playing).

Studies performed by psychologist Alfred Binet in the nineteenth
century indicated that in visualizing or remembering chess games and
positions, chess masters remembered ideas, patterns, plans, and rela-
tions in an abstract manner as opposed to remembering exact details

of positions (Charness, 1978:48; Hearst, 1978:178). In studies of how

12
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chess players think, Adrian deGroot also noted that chess masters ap-
parently recognize positions and play based on some recognition of
features or patterns (Charness, 1978:36-9, 44-6; Hearst, 1978:182-6).
Charness evaluates deGroot's results as indicating an ability on the
part of good chess players to recognize appropriate features and to

use appropriate productions to generate good moves (Charness, 1978:43).
These two studies and others cited by Charness and Hearst indicate that
there are reasonable grounds for modeling the play of chess as a
pattern recognition problem. Implicitly, the same can be said for
other complex games.

A study by Simon and Gilmartin, as referenced by Charness, indi-
cates that a chess master "stores" chess patterns in his memory. They
estimate that 50,000 patterns would theoretically be needed to perform
recall of chess knowledge as well as a chess master does (Charness,
1978:42). MWhile this large number seems to contradict other statements
on abstraction and recognition by chess masters that are cited by
Charness and Hearst,yit does further support the contention that a
pattern recognition process is involved in human game playing.

As a last statement on pattern perception, Ruben Fine states in
his book on how to play the middle game of chess that a strong player
sees more in a given position than a weaker player does and is "more
alive to the combinations inherent in a position" (Fine, 1952:3).

Fine discusses in his book the features he feels are critical to this
perception (Fine, 1952:3-6,'161-4). These features seem to be similar
in nature to those presented by Charness and Hearst in their discus~

sfons.
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In addition to pattern perception of position, chess masters and
strong players in general apparently use a plausible move generation
heuristic. Charness summarizes deGroot's work in the 1930's and 1940's
as discovering that good players of chess usually look at promising
moves while a poorer player "spends his time going down blind alleys"
(Charness, 1978:37). He further suggests that masters do well in
speed chess because they automatically generate plausible moves. He
also cites deGroot as saying that the average number of good moves
arising from a given position in a game between chess masters is 1.76
out of an average 38 possible moves (Charness, 1978:36). Charness
suggests that it is here that a master chess player uses some plausible
move heuristic to select the best moves for further consideration.

Perceiving this apparent use of pattern recognition by human game
players, Hearst suggests that pattern recognition routines used in
concert with more conventional proceduras might produce chess programs
of higher quality than those currently existing(Hearst, 1978:191). The
following proposal calls for the use of two linear machines, in effect

a compound linear machine, to accomplish this.

Proposed Structure for a Compound Linear Machine for Game Playing

It is proposed that a game playing program making use of a compound
linear machine to evaluate moves could be properly trained to play games
well, perhaps in conjunction with other standard game-playing tech-
niques. Any specific machine so structured would be game-specific,
but the general technique could be applied to any arbitrary game. The
compound linear machine proposed would consist of two separate linear
machines operating in concert with move generation and pattern genera-

tion modules. The first linear machine is intended to model the human

14




ability to remember ideas, patterns, and relations of a game. The
second linear machine is intended to model the human ability to gen-
erate plausible moves for investigation.

The first step in using the compound machine for evaluation is to
input a representation of the current board position to both of the
move generation and pattern generation modules. The pattern generation
module produces a pattern vector of the current board (assume all
board patterns have d features). This pattern of the current board
is designated ib. The move generation module produces all possible
next boards for the current board. These possible next boards (assume
L of them) are given as input to the pattern generation module which
generates pattern vectors i} through EL corresponding to the L possible
next boards. Pattern ib is given as input to linear machine 1 and
all patterns of the possible boards are given as input to linear
machine 2.

Linear machine 1 is designated the group discriminant machine and
consists of R linear discriminant functions labeled Gj(x) through
Ge(x). Each such group discriminant function Gj(X) assigns x to the
ith group if and only if Gi(i) > Gj(?) for all j #1i, 1 <i,J <R.
The pattern ib of the current board is given to this linear machine,
and the machine gives as output an index equal to the index of the
group to which xg belongs. This index is given as input to the second
Tinear machine.

The second linear machine is designated the move discriminant
machine. It contains R linear discriminant functions, each uniquely
associated with one of the R groups of the group discriminant machine.

The move discriminants of this second machine are designated gy(X)

15




through gp(x), where gj(x) is associated with the ith group determined

by Gi(ib) of the group discriminant machine. As stated, the inputs of 1
this second machine are the pattern vectors corresponding to the possi-

ble next boards associated with the current board, and the index given *
as output from the first machine that indicates the group membership

of the current board. Possible next boards are evaluated by evaluating

their associated pattern vectors with the move discriminant whose index

is equal to that input from the first machine. The board picked is

then the jth board such that gy(xj) > gy(xy) for all k # j and 1 < j,

k <L, and where I is the index received from the first machine. The

move taken from the current board is then that move which results in

the jth next board. Alternatively, the best n (n some number less than

or equal to L) moves would be picked, based on a numeric ordering of

the evaluations of the next board pattern vectors. A standard game

tree seéarch could be conducted from this point, and thus the compound

linear machine could be used to decide which nodes to expand (i.e.,

most promising).

Figure la and 1b depict the structure of the procedure just
described. Figure la shows the internal structure of the group dis-
criminant machine, while Figure 1b shows the internal structure of the
move discriminant machine.

An underlying conjecture of this proposal is that the pattern
representations of all possible boards form a relatively small number
of linearly separable groups. By separating these groups, the group
discriminant machine mimics human rememberance of ideas, patterns, and
relations of a game. A second underlying conjecture is that the pat-

terns of boards resulting from a given board form two linearly separable
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Figure 1b. Exploded View of Move Discriminant Machine
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groups of boards: good boards and what will be called alternate
boards. In separating these boards the move discriminant machine as-
signs a value to each board. The good boards have patterns for which
the value of evaluation function (discriminant function) is greatest.
The moves leading to such boards are identified as good moves.
Thus the second linear machine functions as a plausible move generator.
Chapter V will further explore the viability of using linear dis-
crimination by comparing the complex linear machine approach to other
machine game playing approaches. But first Chapter IV will present a
possible training algorithm for the machine to complete the presenta-

tion of the proposal.
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IV. An Algorithm for the Application of Linear
Discriminants in Game Playing

General Statement of Algorithm

This section presents a general method by which to apply linear
discriminants in machine game playing. The approach will be to first
state the algorithm used in general terms. The motivation for each
step will then be presented followed in each instance by an example
application. The example will be the game of tic-tac-toe. The reader
should be aware throughout that tic-tac-toe is used simply because it
is well understood and allows attention to be focused on the algorithm
rather than the example game. The algorithm consists of the following

steps:

1. Choose a state space representation of the game.

2. Choose a pattern representation for an arbitrary state in
the state space.

3. Choose or generate a set of training positions from the
state space for which the best move or best next position is either
known or recommended by some expert.

4. For each member of the training set, generate the patterns
associated with the possible next positions (boards) and label them
as to whether they represent good (recommended) boards or alternate
boards. Using a linear discrimination routine, attempt to separate
the two classes of good and alternate boards. If necessary, use the
results to fine tune the pattern representation chosen in step 2 and
repeat this step (4).

5a. For the members of the training set, generate the patterns
associated with the members themselves (as opposed to the patterns of
next positions). Using a clustering algorithm, form clusters of
boards in the training set based on the pattern representations.
Verify that the clusters chosen are "reproducible." These clusters
wi]]ibecome the groups of boards to be separated by a group discriminant
machine.
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5b. For the clusters chosen in step 5, use a linear discriminant
training method to determine a weight vector for each cluster that will
separate, for each member of the cluster, recommended moves from al-
ternate moves. If separation cannot be achieved, produce results based
on some "best possible" criterion. The resulting discriminant functions,
one per group, will become part of a move discriminant machine.

5¢c. If step 5b does not produce acceptable results, iteratively
repeat steps 5a and 5b making modifications to cluster membership based
on results "to date" prior to each iteration. Continue until in some
sense satisfied with results.
The procedure described above is more heuristic than analytic. The
following description of each step, with examples, provides further

explanation.

Step 1. Choose a State Space Representation

The motivation for this step is explained in the background section.
An implicit specification of the state space is employed. The exact
form of the specification is dependent on the game but there are some
general guidelines. The state space description should permit easy
computation by the state transformation operators (Nilsson, 1971:18).
Additionally, since the concern here is with a pattern representation
of each state, the state representation should in some sense be easy to
evaluate for features of a pattern.

In studying a game the representation of the state space as a game
tree (actually partial game subtrees expanded from each current board
position evaluated) will be used. The state space operators, the rules
governing legal moves in the game, are used to produce all next states
from each current position. The relative worth of each possible next
state is assigned through evaluation of its pattern representation. The

desired next board is picked as a result of the evaluation.
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In this setting a linear discriminant function will play the role
of the static evaluation function commonly applied at such points in
game playing programs (Jackson, 1974:129; Slagle, 1971:143-60; Nilsson,
1971:137-40). Discussion of this choice for an evaluation function will
be postponed to the description of step 4.

As an example representation, consider tic-tac-toe. Number the
tic-tac-toe positions as shown in Figure 1. Now represent a tic-tac-
toe state as a 10-tuple in which each of the first nine elements cor-
responds to a block of the game board and the tenth element indicates
which player is to move next. As a simplification, always refer to the
player to move first in the game as X and the second player as 0.
Signify an empty or blank position by using the symbol B. A game
state may then be written as s = (by, b2, b3, bg, b5, bs, b7, bg, bg,
b1g) where each bi, i =1, . . ., 9, is equal to X,0, or B and byp
equals X or 0. Designate the set of all possible game states as C.
Then S, a subset of C containing all possible start states, contains
a single state designated sy with sg = (8,B,B,8,8,8,8,8,8,X). Define
the set of goal states G as follows: a state is a member of G if and
only if ({(by = b2 = b3 # B) or (bg = bg = bg # B) or (b7 = bg = bg # B)
or (b = bg = by # B) or (b2 = bs = bg # B) or (b3 = bg = bg # B) or
(b1 = bs = bg # B) or (b3 = bs = by # B)). Comparison with Figure 2
demonstrates that these definitions correspond to completion of a row,

column, or diagonal by either player.

14213
415
71819

Figure 2. Position Numbering of Tic-Tac-Toe Board
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XO O
O X | X
OIX|X X

board i board j

X100

Figure 3a. Example Boards

Si (X,O,B,B,O,B,O,X,X,X)

Sj (O,B,O,X,X,O,X,B,X,O)

Figure 3b. Corresponding State Descriptions for Figure 2a

g1(sj)€ |(x,0,x,8,0,B,0,X,X,0)
(X,O,B,X,O,B,O,X;Xgo);
(x,0,8,8,0,X,0,X,X,0)

gz(Sj)G (O,X,O,X,X,O,X,B,X,X)
(0,8,0,X,X,0,X,B,X,X)

Figure 3c. Application of Tic-Tac-Toe State Operators to States of Figure 2b

Figure 3. State Description Example for Tic-Tac-Toe
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The last definition required is that for the set of state space
operators which transform a given state into one of the possible next
states. Define two operators, gy and g;. Operator 94 is applied only
to states in which bjg = X with the effect that for some bj = B, bj
is set equal to X and by is set equal to 0. Operator g7 acts in a
similar manner on states for which byg = 0 with the effect that some
bj = B is set to 0 and bjp is set to X. Figure 3 demonstrates the
application of these operators.

Note that if we define the set T, a subset of C, as the set of
terminal states for a game, it may be possible that T # G. That is, -
it may be possible that there are positions which represent a game
that has ended for which there is no winner. If this is possible, it
may happen that a player cannot reach a member of the goal set G as
defined, but may settle for reaching a member of the set T. For any
game in which this may happen, such an alternate goal will be assumed
to have been implied by the choice of a training set (next step). We
therefore need not be concerned with more than the definition of T.
For tic-tac-toe, the terminal set T is defined as the union of the
set G with the set of all boards in which no bj = B. Then in tic-tac-

toe, GC T.

Step 2. Choose a Pattern Representation of a State

After a choice is made for a state space representation of a game,
a pattern representation is required. There are two considerations to
be kept in mind when meeting this requirement. First, an evaluation
should somehow measure the worth of a state with respect to one of the

players. The decision is basically an intuitive one but should be
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supportable by empirical evidence (Uhr, 1973:91). Consider the follow-
ing examples. A kalah program written by Russell, in which the main
objective could be considered ownership of stones, subtracts the number
of stones owned or controlled by one player from the number of stones
owned or controlled by the other player (Russell, 1964:9). Samuel's
checker program attempted to measure various properties of the checker
board that were considered to indicate “strong" position for a given
player (Samuel, 1959:212). Most chess programs measure and weight
factors considered important in a strong chess position, such as ma-
terial balance, pawn structure, king safety, and center control (Green-
blatt, 1967:805; Gillogy, 1971:10; Slate, 1978:93-101). The approach
to be used here is similar: determine what features of a subject game
are important and use real-valued functions to obtain a measure of

each feature. However, do not assign a coefficient or weight to any
feature (i.e., do not pre-determine any linear combination of the
features). Instead, arrange the value of the functions into an n-tuple
which becomes the pattern vector for an evaluated position. Let later
linear discrimination routines decide on weighting.

The second consideration in board evaluation is that the method
should produce similar pattern representations, perhaps identical repre-
sentations, for similar boards. For instance, in tic-tac-toe there
are four ways in which the second player can take a corner square after
the first player takes the center. But with respect to what consti-
tutes a good third move, these four boards are all basically the same.
Therefore their representations should be similar. A more concise
statement is that a pattern evaluation should be invariant to transla-

tions, rotations, and symmetries of board positions.
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Consider now the example game of tic-tac-toe. The objective is
for one player to complete a sequence of three in a row before his
opponent does. Further consideration will indicate that in reaching
this goal, it is advantageous for a player to have more open rows,
columns, or diagonals than his opponent. Here, open means unblocked
by one's opponent. The ensuing discussion will use this definition
and will use the term combination to refer to row, column, or diagonal
(see Fighre 4a). For example, in his use of tic-tac-toe as an example
game Nilsson sets the evaluation of a position equal to the number of
combinations open for player A minus the number of combinations open
for player B. The evaluation is with respect to player A (Nilsson,
1971:139). The evaluation now to be given is similar, but does not
pre-determine the linear combination of the features to be used. Con-
sider five counts; count the number of combinations in which player A
has one, two, or three marks in a row and let these counts become
features one, two, and three respectively. For player B, count the
number of ways in which he has one or two in a row and let these counts
be features four and five respectively (three in a row is not counted
for player B since it represents a game already lost by player A).

The real-valued functions wnich measure these features then consist
of counting procedures on the possible combinations in the game. The
resultant pattern vector consists of five elements corresponding to
the five features, where the value of feature one is determined by
function one, etc. If a state description is designated s;j, then the
functions may be expréssed f1(si,p) to fg(sj,p) where p indicates to
which player the evaluation is referenced. The pattern vector is a

5-tuple.
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Combination Squares
Number Involved

1,2,3
4,5,6
7,8,9

1,4,7
2,5,8
3,6,9
1,5,9
3,5,7

0 N OV O W N =

Figure 4a. Delineation of Combinations in Tic-Tac-Toe

X100

X s3 = (X,0,0,8,X,8,X,8,8,0)

X

Figure 4b. Example Board and Pattern for Evaluation

Function Description of
Index, j function fj(sijp) fj(sij0] fj(sijx)
] Counts one-in-a-row (unblocked) 1 1
for player p
2 Counts two-in-a-row (unblocked) 0 2
for player p
3 Counts three-in-a-row (unblocked} 0 0
for player p
4 Counts one-in-a-row (unblocked) 1 1
for opponent of p
5 Counts two-in-a-row (unblocked) 2 0

for opponent of p

Figure 4c. Evaluation of Figure 4b Example

Figure 4. Evaluation Data for a Tic-Tac-Toe Board
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Figure 4 demonstrates an evaluation of a tic-tac-toe board using
the features just described. Inspection of the figure shows that if
the pictured board is evaluated with respect to player 0 the resultant
pattern vector is (1,0,0,1,2). If the board is evaluated with respect

to player X the pattern vector is (1,2,0,1,0).

Step 3. Choose a Set of Training Boards

The process by which a linear machine (a procedure using linear
discriminants) attains the goal of classifying patterns properly has
become known as training. The training process involves first choos-
ing a large number of patterns typical of those the machine must
ultimately classify, and then using the set in some adjustment process
by which the linear machine is trained to classify patterns properly
(Nilsson, 1965:9). The following discussion is concerned with picking
the training set of representative patterns (boards) for a game playing
problem.

The only clear requirement in choosing training boards is that
the set of boards chosen be representative of those to be encountered
in game playing. If specific types of positions in a game are the
primary concern, then the training set might consist of only those
type of positions. The size of the training set must be determined
based on the characteristics of the training environment. If only a
reasonably small number of patterns may ever occur, then all of the
patterns could be used in the training set. In the more usual instance
where the number of patterns expected to exist is finite but large,
the problem is one of making a tradeoff between computation time versus

confidence in results. As an example choice, Samuel used a "reasonable
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number"” of approximately 250,000 board positions culled from a much
larger number in training a checker program (Samuel, 1967:612). This
number is not so large when contrasted to the estimated 1078 possible
checker positions (Jackson, 1974:125).

Again consider the tic-tac-toe example. If rotations, reflections
and symmetries are ignored, there are 15,120 different sequences for
the first five moves of the game. If rotations, reflections, and
symmetries (similarities) are counted only once, the number of possible
positions reduces to a manageable number (Hinrichs, 1979:196). For
instance, there are only three possible first moves: center, side,
corner. From a center opening, there are only two distinct second
moves, five moves from a side opening, and five moves from a corner
opening. The number of possibilities for the first five moves is then
reduced to 3+ (2 +5+5) -7 .6 -5=2523. This reduction of
possibilities is warranted since the evaluation of boards is required
to be invariant to translation, rotation, and symmetry. Consider,
then, the following method of choosing training boards for tic-tac-toe.
Since the game is relatively short, take each possible board after a
first move and expand a partial game subtree from it. At each level
in the expansion, if faced with an obvious "move or lose" situation,
expand only the move which avoids loss. Pick as training boards those
boards in the resultant partial game trees which represent a probable
path based on both players making their best move. Some possible
partial game subtrees and chosen boards from following this procedure
are given in Appendix 3. For tic-tac-toe this procedure results in
paths through the state space leading to ties. Since a trained linear

discriminant should also be able to find winning moves, a few additional
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boards representing a winning path for one side were also added to
the training set. The resultant set contains 38 training boards (see
Appendix 3).

The specific procedure of game tree expansion would of course be
impractical in larger games. In such situations one uses book moves,
defined as those recommended by experts of the game, and chooses a
reasonable number of boards for the training set (Samuel, 1959 and 1967;

Slagle, 1971:143).

Step 4. Attempt to Find a Linear Discriminant Function for Each
Training Board

This step applies linear discrimination to the data built up in
the first three steps. A brief rationale for using linear discriminants
will be followed by a description of the linear discriminant training
procedure used and a brief discussion of an example application for
tic-tac-toe.

To this point in the presentation no justification for the use
of linear discriminants has been given, other than the conjecture
that they might be useful. The basic rationale for their use is that
evaluation functions for game playing are often chosen to be linear for
the sake of simplicity (Slagle, 1971:19). Such choice is justified by
the success of game playing programs that use linear evaluation func-
tions. For instance, Greenblatt's chess program is believed to play
at a "fairly respectable high amateur level in chess (in tournament
play it is ceded [sic] as a class B player, a bit below the Master
classes)” (Uhr, 1973:206). Further support is given by the fact that
in February 1977 the Minnesota Open Chess Tournament was won by another

computer chess program, Chess 4.5 (Whalend, 1978:168). This program's
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evaluations consisted of linear combinations of evaluated features
(Slate, 1978:94-103), as did the evaluations of Greenblatt's program
(Greenblatt, 1967:805). The use of a linear discriminant thus seems
well justified.

The purpose of this step is to attempt to find for each training
board a linear discriminant function which will separate good moves
from bad moves for that board. In actual application, the separation
attempted is one of boards reached via a good move from boards reached
via an alternative move. This is an equivalent separation for the
purposes of game playing, since each move is associated with a resultant
board. The problem is equivalent to finding a hyperplane, in the aug-
mented pattern space, that separates the two subsets of patterns.

There are a variety of algorithms for solving such a problem. The
algorithm employed is one of six algorithms tested by Slagle (Slagle,
1979:178-83). It was found to be fast and to give central solutions;
central means that the solution hyperplane (whose equation is the dis-
criminant function searched for) is centered between the classes in-
volved if a solution is found. Central solutions are desirable because
the training patterns are only samples and later use of a central solu-
tion is expected to cause fewer classification errors for new samples.
The method is an extension of the algorithms for solving linear inequal-
jties given by Mays (Mays, 1964:465-8) and Chang (Chang, 1971:222-5).
The method is explained in full in Appendix 1. The following paragraph
explains the basic use and result.

The procedure is called the Central Accelerated Relaxation Method,
or CARM. Remember the purpose here is to find a function g{x) such

that g(xj) > 0 if Yi is in the class of recommended boards. Making use
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of this, create augmented pattern vectors y; such that y; = (xj,1) if
Xj represents a good board and yi = (-xj, -1) if x; represents an
alternative board. If a matrix A is created in which each row is one
of these augmented pattern vectors, then solving the system of inequal-
ities A - ¢ > 0 for a solution vector c is equivalent to finding a ¢
such that g(xj) = ET(ig, 1) where gj(x) is the discriminant function
searched for. CARM uses a relaxation method to solve a matrix inequal-
ity for a solution vector.

In application to tic-tac-toe, each set of resultant boards from
a designated training board is evaluated and the associated pattern
vector for each board is augmented. If the board is not a "good"
board, the augmented vector is multiplied by minus one. All generated
augmented vectors are then used to form a matrix A and CARM is used
to find a weight vector that will separate good boards from alternate
boards. The results for all individual training boards are given in
Appendix 3. One board with associated training problem is reproduced
in Figure 5 for illustration. Player X is to move, with the possible
moves being positions 5, 6, or 9. The move to position 5 is the only good
move designated. The pattern vectors associated with boards resulting
from moves 5, 6, and 9 are (1, 1, 1, 0, 0), (1, 2, 0, 0, 1) and
(0, 3, 0, 1, 1) respectively. The resultant training matrix is shown
in Figure 5. The matrix was given to the procedure that implements
CARM and the weight vector shown was determined. In this example
linear discrimination is achieved since there is a linear discriminant
function such that g(xj) > 0 for Ii a pattern from a good board and

g(xj) < 0 for xj an alternate board.
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Figure 5a. Training Board (Reference Number 38)
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move = 5 move = 6 move = G

Figure 5b. Resultant Boards

Figure 5¢. Resultant Matrix of Augmented Patterns where
Negative of Alternate Board Patterns is Taken
W' = (0.225, -0.375, 0.824, 0.0, -0.6, 0.225)
.g(xs) = Wl - (x5,1) = 0.899

g(ié) = -0.9
9(79) = -1.5

Figure 5d. Example Solution Vector

Figure 5. Example Augmented Pattern Matrix and
Solution Vector from Linear Discrimination Method
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If the function determined were used in actual game playing, the
i} picked as best would be that i} which gave the highest value in the
g(xj) evaluation. Therefore, results from linear discrimination at-
tempts will be acceptable as long as g(xj) > g(Ij) for all xj, where X;
is any member of the class of good boards and xj is a member of the
class of alternate boards. The importance of this point is that results
may still be usable even if linear discrimination is not achieved.
CARM will (theoretically) provide a solution if one exists, but the

result may be usable even if not a true solution.

Step 5a. Cluster the Training Boards

Reasons for Attempting Clustering. The preceding step of finding

linear discriminant functions for individual boards was designed to
test the usability of the pattern representation chosen earlier. O0Ob-
viously in games with a large number of possible board positions one
discriminant per board will not be useful. Step 5 is designed to

find groups of boards for which a single discriminant might work. The
conjecture is that there might be a small number of such groups for
even a complicated game.

Clustering is a fairly common approach to problems in which the
underlying structure of a pattern space must be studied. There are a
variety of well documented techniques that may be used. Duda and Hart
(Duda, 1973:211-37) offer a good synopsis while the most complete
reference for clustering is probably Anderberg (Anderberg, 1972). The
approach taken here will be to describe the use of clustering in the
current work without going into an analysis of clustering itself.

The interested reader is referred to the cited material.




The conjecture that there might be clusters underlying a pattern
representation of a game is supported by methods used in some game
playing programs. The more successful chess programs which use linear
evaluation functions change the nature of the evaluation function as
the game progresses from opening to middle game to end game (Gillogy,
1971:8-12; Slate, 1978:93-101). The suggestion here is that a pattern

representation of the boards would reflect the game progress, and that

e
s

in fact the referenced programs are using different iinear functions
for distinguishable classes or groups of boards. Another examplie is
the kalah program of Russel, which also changes the nature of its
linear evaluation function based on the progress of the game (Russell
1964,9). The problem is therefore one of decided on what basis to
cluster boards.

Choice of a Similarity Measure. The problem of a basis for the

clustering is the common first problem of all clustering attempts. It
is usually stated as the problem of finding a similarity measure by
which to cluster the information at hand. There are a variety of
similarity measures suggested in the literature, most of which are
covered in the references-cited earlier. For this case in which game
boards are to be clustered, Euclidean distance is the measure chosen.
Although this similarity measure is often faulted, its use is justified
as follows. The overall problem is one of findinggroups of boards

for which a single 1inear discriminant can be used. In most games,
the boards that all descend immediately from a common predecessor will
certainly all be very similar. Since the pattern of the board will be

a function of the board position, it is reasonable to expect that
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patterns for boards descended from a common predecessor will have similar
patterns. These patterns should therefore be close, or similar, in the
sense of Euclidean distance.

Choice of a Clustering Method. Once the choice of a similarity

measure for clustering is made, a choice on a specific routine to be
employed is required. For the case of game board clustering, hier-
archial clustering was chosen. There were two underlying reasons. First,
hierarchial clustering requires no pre-knowledge of possible clusters.
Second, a Fortran subroutine implementing hierarchial clustering was
readily available. The routine used was the OCLINK routine in the
International Mathematics and Statistics Library (IMSL) (IMSL, 1979).
Given a similarity matrix for the data to be clustered, this routine
performs either single-linkage or complete-linkage hierarchial cluster
analysis.

The basic description of hierarchial clustering is as follows.
Given N data points (clusters), form a new cluster by combining the
two closest points as measured by some similarity measure. Record the
similarity level of this new cluster with respect to all remaining data
points (clusters). Repeat the procedure until all data are merged
into a single cluster (IMSL, 1979:0CLINK-2). The OCLINK routine used
permits either single-linkage or complete-linkage hierarchial cluster-
ing. For a distance-like similarity measure, single linkage measures
the similarity between two clusters, p and q, as the minimum distance
between any point in p and any point in q. Complete linkage determines
the similarity measure between clusters p and q as the maximum distance
between any point in p and any point in q. With single linkage cluster-

ing any entity in a newly formed cluster is at most a distance s from
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its nearest neighbor, where s is the similarity measure of the two (or
more) clusters merged to form the new cluster. With complete linkage
clustering every member of a newly formed cluster is at most a dis-
tance s from every other member in the new cluster, not just the point's
nearest neighbor. Generally speaking, single linkage is incapable of
delineating poorly separated clusters, but it is one of the few cluster-
ing techniques capable of outlining non-ellipsoidal clusters. The com-
plete linkage method generally forms tightly bound groups with a "very
large" distance between groups with respect to a distance-like similarity
measure. This is because the similarity of the two groups under the
complete linkage method is the distance between the two most extreme
data points. The "nearest neighbor" from one group to the next may be
much closer (Anderberg, 1972:238-42; IMSL, 1979:0CLINK-2,3). The de-
cision of which hierarchial clustering method to use must be based on
the data points to be clustered. If there is no fore-knowledge of what
the clusters to be formed may be like, both methods may be tried and

the results compared with respect to the purpose for clustering.

Example Clustering. A similarity matrix was computed for the

unaugmented patterns of each of the thirty-eight tic-tac-toe training
boards. The matrix was used in OCLINK to attempt both single linkage
and complete linkage clustering. The results of the single linkage
clustering are shown in Figure 6 and complete linkage in Figure 7.

The results are presented as dendrograms where the leftmost nodes repre-
sent the initial data points. The joining of two or more nodes into a
new node indicates the formation of a new (larger) cluster. The sim-
ilarity of points within a cluster grows smaller as larger clusters are

formed. For a distance-like similarity this means the distance measures
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between points are larger. As can be seen from Figure 6, if any clusters
exist they are close to one another and the single linkage method could
not find them. All of the points merged at node 4¢ are in fact exactly
a distance of one from each other in the pattern space. Figure 7, on
the other hand, shows a clear distinction between possible clusters.
For the purpose of finding groups of boards for which a single linear
discriminant function could be used to find moves, the results from
complete linkage clustering are more useful. The level at which to
decide a distinct cluster is formed is matter of judgement on the part
of the researcher. For dendrogramof Figure 7, an initial clustering
at nodes 73, 66, 69, and 71 was chosen. It is interesting to note that
nodes 54, 53, 50, 61, etc. through 47 were all formed at the same level
and that the similarity measure (distance) at each merger was one. In
Figure 6, thirty-five boards were clustered simultaneously into a single
cluster at that level (node 46). But because complete linkage uses
maximum distance instead of minimum distance, complete linkage goes on
to result in Figure 7, which is strikingly different from Figure 6.
Once initial clusters are picked, the ability to reform the same
clusters should be verified. The exact method used should be based on
the similarity measure used for the initial clustering. The compound
1inear machine proposed in this paper would use linear discriminants to
divide the patterns of the training boards themselves into groups.
Therefore the Centered Accelerated Relaxation Method (CARM) discussed
at step 4 was employed in attempting to ensure that the training boards
could be correctly assigned to clusters. The method used was to gen-
erate a training matrix containing an augmented pattern vector for each

board in the training set. For each cluster, in turn, the matrix was
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modified so that all patterns of boards assigned to the cluster in
question were positive, but all patterns of boards not in the cluster
were negated. The problem of separating clusters was then reduced to
the problem of solving linear inequalities simultaneously. Thus, one
execution of CARM is required for each cluster, and a weight vector
becomes associated with each cluster. The resultant weight vectors

from this step will be called group discriminants. It should be obvious

that the attempt made here is a separation of multiple classes, in-
stead of just two as in the case of move discrimination.

The initial attempt at this method resulted in four class dis-
criminants that correctly classified thirty-four out of thirty-eight
boards. Attempts at improvement of this performance were postponed
until results from initial attempts to find move discriminants for

each class were made.

Step 5b. Find a Move Discriminant for Each Class

In this step, the purpose is to find a linear discriminant for
each class of step 5a such that the linear discriminant can success-
fully separate the good moves from the alternate moves for all boards
assigned to the cluster. The discriminant function resulting from

this step is referred to as the move discriminant of its respective

class.

The discriminant training method used at this step is again the
Centered Accelerated Relaxation Method, CARM. Pattern vectors for the
training matrix consisted of the patterns representing all next possible

boards for all of the training boards in a given cluster. The patterns
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were augmented and as in step 4 the augmented patterns representing
alternative moves were negated while those representing good moves were
left positive. This procedure was repeated for each cluster so that
one move discriminant per cluster was searched for.
The initial attempt at finding move discriminants was made on the
same clusters for which group discriminants had been searched for in
step 5a. The move discriminants returned by CARM successfully evaluated 1
thirty-four out of the thirty-eight training boards of the four groups. ‘
As previously suggested, improvemént of the move discrimination attempts
should be done in tandem with improvement of the group discrimination
attempts, since a "working" move discriminator for a given group is of
little use if the boards of the group cannot be recognized. This leads

to the iterative improvement part of this step.

Step 5¢c. Iteratively Improve Performance of Discriminants

The purpose of this step is to attempt improvement of the group
discriminants and move discriminants found in step 5a and 5b until some
"acceptable" level of performance is achieved.

There is no clear method by which groups could be rearranged to
guarantee improvement in performance of either move or group discrim-
inants. The approach to be taken should be a function of the patterns
being discriminated and of the current performance of the discriminants,
but beyond this guide, intuition plays as large a role as any other
algorithm. For the case of tic-tac-toe, improvement was sought as
follows.

Refer to Figure 8. Each column of the figure represents the groups

picked at each attempt at improvement. The leftmost column represents
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the initial groups picked in step S5a. The first 1ine of each box repre-
senting a group gives the group identification number assigned and the
number ofmember boards. The second line indicates how many of the
boards were misclassified, i.e., assigned to another group by the group
discriminants found at that stage, and will also indicate the number

of boards in the groups for which the groupsmove discriminant, as
determined at that stage, could not successfully "pick" a good move.
The memberships of the initial groups of co]umn:one may be determined
by comparing the identification number of a group to node numbers in
the dendrogram of Figure 6. In moving right across the figure, the -
connecting arrows indicate the reassignment of boards from one group to
another for the next stage of attempted improvement. The numbers below
each column indicate the total number of boards misclassified (assigned
to the wrong group) and the total number of boards for which a wrong
move (an alternate instead of a good move) would be picked by the

move discriminants of each stage.

In going from the initial clustering to the second clustering
atfempt (column 2, Figure 8), boards were assigned to clusters based on
how the group discriminants of attempt 1 would have assigned them.

For instance, the group discriminants of attempt 1 assigned boards 12
and 19 to cluster 73 instead of cluster 69. Therefore they were
"moved” to cluster 73 and the cluster was renumbered 76 to distinguish
it from the original cluster 73. A1l of the boards in cluster 66 were
correctly classified as members of that cluster by the group discrim-
inants of attempt 1 and therefore that cluster was left as is for
attempt 2. After the reassignments indicated in Figure 8, steps 5a and

5b were repeated for the groups indicated in column 2 of the figure.
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As indicated, the new assigned clusterings resulted in groupdiscriminanis
that correctly classified thirty-six of thirty-eight boards and in move
discriminants that picked good moves for thirty-four out of thirty-eight
boards.

For attempt 3 the reassignments indicated by Figure 8 were again
made based on cluster assignment of groups by the group discriminants
of the previous attempt. As a result, thirty-seven out of thirty-eight
boards were correctly assigned to groups but the move discriminants of
each group now picked proper moves for a total of only thirty-one
boards. In attempt 4, board 4 was reassigned based on the group dis-
criminants but.boards 10 and 16 were reassigned (even though group
membership for them had been correctly determined) because the move
discriminators of their respective group could not find a proper move
for them. They were assigned based on a judgement as to which other
move discriminant came "close" to picking the proper move for them. In
attempt 5, board 5 was again reassigned based on where the group dis-
criminants of the previous attempt had classified it.

After the five attempts made, there were many possibilities for
possible improvement that suggested themselves. For instance, the
three boards in group 85 for which the move discriminant of group 85 did
not work could perhaps be broken out into an entirely separate group.
Although not indicated in the figure, in group 84 it is board 10 which
is incorrectly classified in both attempts 4 and 5. It could be reas-
signed also. However, tic-tac-toe was used here only as an example
game by which to help describe the techniques suggested. The decision
was made to leave its study after five attempts and to attempt a more

complex and interesting game.
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One more comment should be made on this step before closing this
discussion. The training algorithm used, CARM, requires the user to
supply an initial guess as to the value of the coefficients in a weight
vector. In all cases of applying CARM to tic-tac-toe, the initial guess
provided consisted of coefficients all set equal to zero. The intent
was to assure that the possible performance of the procedure was not
prejudiced, so that any results could be considered true learning by
the program. In attempting iterative improvements after the initial
attempts at clustering and move discrimination for the clusters, it
may have been better to use as an initial guess for the discriminant
at each step a weight vector determined in the previous attempt. Addi-
tionally, it is possible that a different method of determining initial
cluster membership, e.g., "nearest proto-type" assignment, might have
provided better clustering results. The only reply to possible question-
ing along these lines is that time considerations suggested continuing
on to a more interesting game and that the purpose of using tic-tac-toe
was to provide an easily understood example (and easily performed de-

bugging of code). Success in tic-tac-toe was not a goal.
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V. Comparison of the Compound Linear Machine Approach
to other Game Playing Approaches

Overview of other Approaches to Machine Game Playing

There are two basic approaches to machine game playing that appear
in the literature. The first approach is commonly known as a Shannon
approach as it involves game tree generation and search used with a
static evaluation function for evaluation of "end" nodes as proposed by
Shannon for chess playing (Shannon, 1950). The second approach will be
called the forcing state approach after its primary characteristic
(Koffman, 1967; Koffman, 1968; Banerji, 1970; King, 1971). The pro-
posal os this paper falls under the Shannon approach classification and
detailed comparisons will be made in this area. Before beginning a

comparison with the forcing state approach will be made.

Comparison to Forcing State Approach

Several researchers at Case Western Reserve University have in-
vestigated a method of machine game playing exhibiting learning that
differs from the classical learning programs such as Samuel's checker
program. The approach is to write a program that memorizes patterns
that lTead to wins. The program then uses these patterns itself to win
and defends against them to prevent losses. The program is written to
recognize forcing states, defined as configurations for which there
exist a sequence of offensive moves ending in a win and for which the
defensive player can make only one play in each case if he is to avoid
loss (Koffman, 1968:13). The program takes the record of each game it

loses and "plays it backward", storing the sequence of moves that led
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directly to the loss and also the pattern on the game board directly
responsible for this sequence of moves. It then uses these forcing
patterns and moves in later play. There is more detail to the exact
learning procedure and approach, but this is the basic method used
(Koffman, 1967:55-67; Koffman 1968:13-4; King, 1971:18-26, 52-61).

The method has only been applied to the class of games known as posi-
tional games, but it could be used in any instance in which the existence
of forcing sequences and states is suspected (a positional game is

fully defined by Koffman in his work, but examples are tic-tac-toe

games of varying dimension, Shannon network games, and Go-Moku).

This type of learning program is not directly comparable to a
linear machine approach, but some general comments can be made. The
forcing state approach is quicker and more rational in some cases, as
suggested by the authors who have written of it. The approach would
seem justified any time the game is reasonably finite in the sense that
the possible number of positions is comparatively small. However,
consider chess. As documented elsewhere in this paper there are probably
10120 possible chess positions. It is assumed that some of these
positions may represent forcing states or the beginning of a forcing
sequence. However, the forcing state approach apparently requires the
storage of all known forcing sequences. Storage requirements apparently
rise linearly (or nearly so) with the number of such sequences (Koffman,
1967:78). While some savings in this area are proposed by Koffman,
time and memory requirements are still proportional to the number of
forcing sequences found. It is reasonable to assume that in complex
or large games such as chess the number of such sequences would be very

large if they do exist.
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The compound machine approach proposed in this paper also requires
large amounts of memory and storage in the training mode, but would not
in the playing mode. The knowledge concerning what type of board posi-
tion existed at each point in the game, and the proper type of response
to make in each situation, is very efficiently stored in the discrim-
inant functions of the two machines. A program to play a game would
need store only the group discriminants to be used in deciding to which
group a board belonged and the move discriminant associated with that
group. It is contended by this author that a search for a proper move
consisting of board evaluations with the discriminants would be at
least as efficient as searching through stored forcing states for a
match on the current board. If the number of forcing states is quite
large the discriminants could represent a more efficient method.

In all fairness, it is noted that this is a cursory examination
and that the forcing state approach does have strengths not discussed.
However, for complex games the comparison seems justified and the ap-

proach of Shannon seems more promising.

General Description of Shannon Approach

The most common approach to game playing by machine is probably
that suggested by Shannon in 1949. Shannon describes two possible
strategies. A Type A strategy involves considering all possible varia-
tions from some current position out to some definite number of varia-
tions. This basically involves a game subtree expansion out to some
predetermined level. The end nodes of this expansion are then eval-
uated with some static evaluation function that assigns a value to

each such end position. The choice of a next move is based on some

49




assessment (usually maximum value) of these evaluations. In the Type B
strategy "forceful" variations are expanded as far as possible, and
positions are only evaluated if they are "quasi-stable" (i.e., if there
are no imminent captures or losses). The Type B strategy also performs
search tree pruning at each level of expansion to speed tree search.
That is, some number of possible expansions from a position are elim-
inated from further consideration for expansion through use of some pre-
determined rule. A common rule is to expand only those n next positions
having the highest value assigned by a static evaluation function, where
n is some pre-determined number. The end positions resulting from this
expansion strategy are then evaluated by some static evaluation function
and a decision on which move to make is again based on these evalua-
tions (Shannon, 1950). Although these approaches were proposed for a
chess program, they have been applied to a variety of games. The com-
pound linear machine proposed in this paper can be characterized as an
implementation of a Type B Shannon strategy, where the move discriminant

is used to prune the tree before further expansion.

Comparison to Non-Learning Shannon Type Programs

Although there are several successful Shannon type game playing
programs, the majority of them do not learn. This type Shannon program
will be compared to the compound 1inear machine approach first. The
best examples are probably the series of chess programs developed by
Slate and Atkin at Northwestern University (Slate, 1978) and the Green-
blatt chess program (Greenblatt, 1967). Both of these programs use a
Tinear evaluation function to evaluate positions, and both change the

specific nature of the terms evaluated depending on the state of the
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game (beginning, middle, end, or the like). (The approach of these
programs was presented in more detail in discussion of step 4 of the
algorithm of Chater IV.) The terms evaluated by these programs are
equivalent to the feature evaluation that is performed in constructing

a pattern for evaluation by a Tinear discriminant. A linear combination
of the terms used by Greenblatt and Slate is equivalent to computing

the dot product of a weight vector in a linear discriminant with a
pattern vector. The difference lies in the fact that in the approach
exemplified by Greenblatt and Slate, the programmer determines the
coefficients to be used. In the linear machine approach the coefficients
are determined by a training algorithm that is guaranteed to find a
solution that will separate good moves from alternate moves if such a
Tinear solution in fact exists. .This separation is implicitly assumed
by the other approach, but the intuitive and heuristic methods used

there to pick coefficients does not guarantee finding proper coefficients
even if separation is possible.

As explained in Chapter IV in the discussion of step 3 of the
algorithm, the Greenblatt and Slate programs vary their evaluation func-
tions depending on the progress of the game. The thought here is that
different features vary in importance as the game progresses. This
concept is also present in the compound linear machine formulation.

The first linear machine, the group discriminant machine, is expected
to find classes of similar boards for each of which a different weight-
ing of coefficients in the evaluation function can be found. It is
contended that this allows the compound linear machine to adjust its
play to different "phases" of a game and to weight coefficients ap-

propriately for each phase.

51




Both approaches assume distinguishable groups of boards, although
in the Greenblatt and Slate programs decision groups are based on a
generally accepted division of the game of chess into discernible phases.
In the compound machine approach the machine learns phases for itself
in the training algorithm. These may or may not be the phases usually
discerned by humans. To summarize, it appears that the compound linear
machine is merely a different implementation of a common technique.
The major difference is that both the group discriminants and move
discriminants of the proposed machine are trained; thus the machine
can be said to learn the proper evaluations for itself. The type

Shannon program described here does not.

Comparison to Samuel's Shannon Type Checker Program

The most successful and well known Shannon type program that learns,
and one of the few such learning programs, is A . Samuel's checker pro-
gram. Samuel's original checker program was a classical Shannon pro-
gram of Type A in which the evaluation function was a linear polynomial.
The initial learning procedure for the program consisted of rote-
learning in which all boards "seen" by the program were stored in a
normalized form so that the program could recall tree expansions and
evaluations from memory rather than have to expand trees and recompute
positions it had seen before. The program was allowed to forget
(basically purge from storage) boards not used over some period of time
and to periodically update its memory with new boards. A maximum limit
was also set on the size of its memory in terms of the number of boards
that could be stored. The program learned to play a good beginning

and end game, but middle game play was not as good. Samuel evaluated
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the program as being a "better-than-average novice, but definitely not
an expert." Further, to improve mid-game play it was estimated that

the program would need access to at least twenty times more boards than
the 53,000 already stored (Samuel, 1959:212-8). Samuel then turned to a
generalized learning technique that is directly comparable to the com-
pound linear machine approach proposed in this paper.

Samuel's generalized learning technique for this first checker
program consisted basically of having the machine play itself with dif-
ferent versions of a linear polynomial. The machine then updated the
coefficients of the polynomial based on which version of the program
performed’better. The terms in the polynomial are exactly the features
proposed for use in a linear discriminant approach. The coefficients
are equivalent to the weights contained in the weight vector of a
linear discriminant. The details of the coefficients in the checker
program are to be found in Samuel's paper (Samuel, 1967:613), but they
can be generally described as correlation coefficients that measure how
well the program does in choosing book moves. A total of thirty-eight
terms were included in the program, but the program used only sixteen
at a time. The sixteen with the highest correlation coefficients
(highest weight) were chosen for use at any given time (Samuel, 1959:
218-20). The important point here is that the linear polynomial used
is directly comparable to a linear aiscriminant. The coefficients and
terms of the linear polynomial could be expressed as the dot product
of a coefficient vector and a pattern vector, in which the features of
the pattern vector would be equivalent to the terms of the polynomial.
The use of only the sixteen terms with the highest coefficients is only

a minor difference. The major distinction between Samuel's approach and
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the use of linear discriminants to pick moves in the proposed lingar
machine is that Samuel's coefficient modification was heuristic and
no convergence theorms exist. The linear machine approach is guaranteed
to find a linear solution if one exists. (Samuel's approach implicity
assumes a linear separation of good moves from other moves while the
linear machine approach is explicitly based on this assumption.)
Samuel's work did not stop at this point. Later versions of the
program using linear polynomial evaluation used a Shannon B type
strategy to prune branches of an expanded game tree from further con-
sideration. The pruning consisted of investigating only those branches
leading to boards receiving high values in evaluation. Efficient tree
search techniques were used also, but these are techniques that can be
used in any program regardless of the nature of the evaluation function.

As many as forty terms (equivalent to features) were used at different

points in the evaluation with twenty apparently being an optimum number.
The evaluation function itself was still a linear polynomial (Samuel,
1967:602-10). The comments made previously concerning the comparison of
Samuel's polynomial evaluation and a linear machine still apply to this
extension of his approach. In finding a set of twenty terms to be used,
Samuel basically used a trial and error approach. In the linear machine
formulation all terms deemed of possible importance could be included
during the training phase, and the machine would “learn" which terms
were important based on the relative values of weights assigned to each
term in the weight vector determined by a training procedure. Apparent]y.
Samuel did not try to attune different versions of his linear polynomial
to different phases of the game. The use of a group discriminant to-

gether with a move discriminant attuned to each group seems to offer
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better hope of success than Samuel's approach at this point of his
work.

Samuel tried one more approach which proved to be more effective
than either rote learning or use of a polynomial evaluation function.
The following summarization of the technique is adopted from Jackson
(Jackson, 1974:140-6). The parameters (terms) used in previous attempts
were maintained, but possible values were restricted to a small range
of values symmetric about zero. The parameters were divided into six
distinct groups with the possibility of a parameter belonging to more
than one group. Each group contained four parameters. The groups were
designated signature types and a table of all possible combinations of
values for the parameters of each signature type was constructed. A

signature table was thus created where each combination of parameters

had an entry in the table. A value was determined for each signature
type (table entry) and these values ranged over a symmetric set of
values for each table. Thus each signature type was evaluated by table
look-up and the resultant value was the function evaluation. These
signature table values were then used as input terms to a second level
of signature tables, whose values were in turn input to a third and
final set of signature tables. Jackson summarizes the evaluation of a
given board as follows:
1. Determine the values of each of the parametric functions
for the particular board configuration of interest.
2. Enter the first level signature table and determine the
evaluation assigned to each instance of the parameter
group determined in step 1.
3. Using evaluations from the first Tevel, look in the

second-level signature tables for the evaluation of the
configuration.
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4. Obtain the final evaluation by look-up in the
third level table {Jackson, 1974:141).

The values of each of the entries in the third level signature table
were a form of correlation coefficient that measured how well the pro-
gram using this approach did in choosing a book move during training
runs. Values in the first two levels of the signature table approach
were adjusted to result in these values once they were determined.
This consisted mostly of a normalization to scale. This evaluation
method allows construction of a non-linear evaluation function
(Jackson, 1974:146; Samuel, 1967:612-3), but the procedure may still
be compared to training of a linear machine using book moves. In the
training algorithms for linear machines, weight values in a weight
vector are adjusted until the dot products of "recommended board"
pattern vectors with the weight vector are larger than the dot products
of "alternate board" pattern vectors with the same weight vector. In
the case of linear machines this results of course in a linear function
while Samuel's is non-linear. The difference lies not in the approach
as much as it does in the type of decision regions that can be deter-
mined.

There is reason to believe that a linear machine approach may be
able to do as well as the non-linear signature table approach. Consider
that after training, the signature table program predicted book moves
with an accuracy of 48%. This percentage is based on a static evalua-
tion of a given board with no tree search. With this accuracy used in
conjunction with a tree search, the program follows book moves to a
much greater extent (Jackson, 1974:146; Samuel, 1967:615-6). The

strength of the program seems as much dependent on tree search as
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evaluation. Apparently, then, training of a linear machine could also
lead to a program that plays well if the linear machine could predict
book moves with at least 48% accuracy.

To this point the comparison with Samuel's signature table approach
has applied to the move discriminant machine of the compound linear
machine. Jackson points out in his review of Samuel's work that the
program eventually used six different signature table hierarchies, each
attuned to a different phase of the game. This apparently resulted in
some improvement in play (Jackson, 1974:141). This approach is also
embodied in the compound linear machine proposal in the form of the
group discriminant machine. As has now been suggested repeatedly, the
group discriminant machine may be able to assign boards to particular
groupings for each of which a different move discriminant function would
be found.

The primary difference in the approaches, then, seems to be that
the signature tables of the checker player are capable of implementing
a non-linear evaluation function. Considering the "accuracy" of this
function by itself, there is reason to believe that a linear decision

function may be able to do as well.

Comparison to an Advice-Taking Shannon-Like Program

This section compares the compound linear machine proposal to an
advice-taking program written by Zobrist and Carlson. The authors
imply that although the program uses many of the same techniques as
the Shannon type strategies, it is not a Shannon type program. The
following description of their appraoch is based on an article published

in Scientific American which described their work (Zobrist, 1973).
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The most distinctive, and unusual, feature of the program is the
method by which it learns to play chess. Zobrist and Carlson developed
a chess specific language in which the program could be directed to
evaluate what the authors called patterns. Careful analysis of their
patterns indicates that the patterns are what would be termed features
in a more standard pattern recognition approach. Two examples of their
patterns are a pattern hdevoted to getting knights and bishops off the
back rank in the opening" (Zobrist, 1973:96) and attack patterns of
different pieces. These are the same types of things considered by the
standard Shannon type programs such as the Northwestern chess program
(Slate, 1978:92-101). The method of making the program aware of these
patterns is unique, however. A chess master, in this case Charles I.
Kalme, gives the computer advice via a computer input terminal using
the chess specific language developed by Zobrist and Carlson. The
program then stores these patterns for later use. The claim is made
that the computer thus learns proper evaluations in the same sense
that a child learns from an expert teacher. A weight function exists
in the language by which the computer can be told how to calculate
values for snapshots of the patterns, where a snapshot is a particular
instance of a pattern that is stored for later reference. The teaching
can be done at any point in program execution but appears to usually be
done prior to actual game playing. In actual play the program makes its
first few moves of the game by selecting from stored book openings.
After about a half-dozen moves it switches to a thinking mode. In
this mode the program calculates the representation of the current
chess position, and then applies the stored advice (patterns) to take

between 1000 and 3000 snapshots of pattern instances. These are coded
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and saved. These snapshots are not only of the current position but
include data on possible positions that may exist after move and counter
move. The program then chooses the ten best moves based on an evaluation
of the snapshots stored, and performs a standard tree search or look-
ahead procedure. At each stage of the look-ahead the same culling of
nodes (selection of ten best) takes place. The claim is made that the
program has to examine far fewer moves than programs of the Shannon

type do.

Consider this program first in contrast to the standard Shannon
types. The evaluation of moves consists of giving values to features
and using a combination of these values to find a value for a position
or move. MWhile the method used is not static in the same sense as most
Shannon program approaches, the use of information about possible future
positions in the evaluation function does not move the program out of
the Shannon class. In fact Shannon mentions in his original proposal
that such terms could be included in the evaluation function, although
he suggests use of a tree search (Shannon, 1950:262). Additionally,
the pruning of the tree search to the ten best moves is no more than an
application of a Shannon B type strategy. The play of the program
seems to be Shannon type. Therefore in method of play the Zobrist and
Carlson approach compares to the compound linear machine approach in
the same manner as other Shannon programs do.

Now contrast the learning exhibited by this program to that which
should be possible for a compound linear machine. The program does not
learn evaluations or features for itself, but applies those it has
learned from some master (external source). This is not learning of the

type displayed by linear machines. Rather it is suggested that this
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type of learning is no more than an efficient and rapid method of
coding an evaluation function. As Zobrist and Carlson claim, it is
much quicker than the standard programming approach, but it does not
seem that it can accomplish any feat a standard coding approach cannot.
It is probable that there is a good chance for the Zobrist and Carlson
approach to choose proper features for evaluation since a chess master
may input them himself, but this is merely efficient communication of
knowledge rather than an advance beyond the Shannon approach.

In summary, the Zobrist and Carlson approach seems to be a Shannon
type program with a more efficient method of coding the evaluation
function. The accuracy of its evaluation will depend upon a judgemental
decision on the part of the person who teaches it patterns. There is
no guarantee that these evaluations will be accurate even if proper
features are chosen. The dual linear machine approach is also a Shannon
type program and one in which the coding of an evaluation function may
be more difficult. However, the training algorithms for linear machine-
offer a method by which they may learn proper evaluations for themselves
based on some training set specified indirectly by experts through book
moves. These comparisons apply to the move choice made by both ap-
proaches. It should be noted that the Zobrist and Carlson program may
be made sensitive to the phase of the game through the method in which
its patterns are described. It can therefore adjust its play, that is,
jts evaluation. This capability in the compound linear machine approach
js a function of how well the group discriminant function can perform
in finding groups of boards which may have a relationship to game phase.
Since this training phase is overseen to some extent by persons involved

with the program, it seems that any chess knowledge available could be
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included in its evaluation by means of code. Therefore the compound

Tinear machine approach is comparable to the Zobrist and Carlson ap-

proach. Only experimentation will reveal which may work better.
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VI. A Compound Linear Machine for Chess

Chapter Qverview

This chapter describes the creation of a compound linear machine
for use in machine play of chess. The algorithm described in Chapter
IV is used to create and train the machine. The application of each
step to the game of chess is described. Work is restricted to evalua-
tion of chess boards only; no actual attempt to play chess was made.
Results for a small set of training boards are given. The success rate
on this training set is discussed in light of known theory on error '

rates for training sets in pattern recognition problems.

Description of Algorithm Application

Step 1. Choice of a State Space Representation. The state space

representation chosen for chess contains the minimum information needed
to play a complete legal game of chess. The state representation is
almost an exact parallel of the definition of a chess position that
Shannon suggested would be necessary for machine play of chess (Shannon,
1950:257-8) and also closely parallels the position description recom-
mended for computer chess programs by Frey and Atkin (Frey, 1978d).

The state description consists of the following pieces of informa-

tion:

1. The current position of all pieces on the board;
2. The side whose turn it is to move;

3. A statement concerning whether kings or rooks have yet
moved for determination of castling possibilities;
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4. A statement of the last move made for determination
of the possibility of en passent capture;

5. The number of moves made since the tast pawn move or
capture of any piece for determination of possible
stalemate by the 50-move rule;
6. A statement concerning the past sequence of moves
when repetition occurs for determination of possible
stalemate by repetition.
Elements 2 through 6 of the state space description are self-explanatory
and could be stored as boolean values or 1ists of squares and pieces.
Further delineation is made for the description of a board position.
Let p; denote square content where the index i corresponds to one of ‘the
board squares as numbered in Figure 9 and pi takes on a value indicating
the contents of square i as indicated in Table 1. The board description
can then be expressed as a 64-tuple (p7, P2, . . ., pgg) where each pj
indicates the contents of a board square. The restrictions on the
possible values of this 64-tuple (for example only one p; may equal WK
for white king) will be left implicitly defined by the rules for the
game of chess. Note that information concerning possible check or
checkmate is implicitly expressed by the board position but could be
included as a seventh element in the state description.
The set of state space operators will not be defined explicitly
but is embodied in the rules for chess. The set consists of those
operations which are legal moves (proper movement of a single piece to
an empty square or one containing an opponent's piece or castling).
The obvious effect of an operator on a state is to change it to a state
in which the side to move has changed, the 64-tuple describing the board

has been updated as necessary (requiring change to two of its elements),
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Table 1. Chess Piece Notation for State Space Description

Figure 9.

Values for pj Piece

MT empty square
WP white pawn
WN . white knight
WB white bishop
WR white rook
WQ white queen
WK white king
BP black pawn
BN black knight
BB black bishop
BR black rock
BQ black queen
BK black king

Black
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appropriate update of the status of kings and rocks as affected by the
move has been made, adjustment of the count for the 50-move rule has
been made, and adjustment of stored information concerning position
repetition has been accomplished.

The set of goal states for chess is specified as those states in
which one player is checkmated or a condition of stalemate exists.
This is also the set of possible terminal states and therefore the set
of goal and terminal states for chess are identical. WNote that the
type of goal state reachable from a current position (checkmate of the
opponent or stalemate) will be dependent upon the current state. If
checkmate of the opponent is a reachable condition a state indicating
checkmate will be the goal. If checkmate is not acheivable, stalemate
is the goal. The definition of a terminal state is somewhat fluid (as
is goal state definition) due to the possibility of stalemate by the
50-move rule or by repetition. The membership of a state is therefore
dependent on as many as 49 preceding states. This condition is easily
countable, though, and does not change the basic definition for member-
ship of a state in the terminal and goal set.

The preceding description of a state for chess, a set of state
operators, and a goal set provides an informal definition of the game
state space which is adequate for use in designing move generation
routines and pattern training sets for a compound linear machine. In
the following steps a simplified version of this complete state space
description will be used. Deviations and the reasons for them will be

explained at the point of occurrence.
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Step 2. Choice of a Pattern Representation for a Chess Board. The

pattern representation chosen for chess was selected based on those
elements or features of the game which are generally deemed important.
Opinion on the exact nature of these elements varies from expert to
expert but Fine and Reinfeld represent a good sampling (Fine, 1952;
Reinfeld, 1946). Additionally most published works on computer chess
contain an analysis of what the author of the article found to be recom-
mended features (Slate, 1978; Whalend, 1978; Zobrist, 1973; Frey, 1978c,
1978d, 1978e, 1979; Gillogly, 1971; Greenblatt, 1967). Analysis of the
cited sources indicates that the important features were summarized -
by Shannon in his article and that most current chess programs use some
subset or expansion of these (Shannon, 1950:274). The most successful
implementation of these features seems to be that used by CHESS 4.7
and its predecessors. This analysis is based on the fact that versions
of this program have several times been the United States Computer
Chess Champion and the International Computer Chess Champion (Newborn,
1975; Frey, 1978b). Therefore the final selection of features for in-
clusion in a pattern representation for a chess board position was an
adaptation of the evaluation function described for version 4.5 of the
Northwestern chess program (Slate, 1978:93-101). The number of features
used totaled 14. The nature of the features is given in the following
paragraphs (the exact description of each feature evaluation may be
found in procedures EVPAWNS and EVBRDFTRS of the chess program in the
appendices).

The pattern representation for chess consists of seven basic

features with an occurrence of each of these features for both Player,

66




whose side it is to move, and Opponent. Features one through seven of
the pattern vector are the features for Player and features eight
through fourteen are the features for QOpponent. Features one through
seven compare respectively with features eight through fourteen in
terms of which basic feature is represented. These basic features are
now described.

Features one and eight are a measure of the total material power
of each side in terms of piece values. The values assigned to each
piece are one tenth of those used by CHESS 4.5 (Slate, 1978b:94).

This is because the values of the other terms adopted from CHESS 4.5°
seldom total more than 1.5 times the value of a pawn. It was felt

that such a large disparity between feature values would definitely
affect the behavior of a linear discriminant's training algorithm.

Slate and Atkin use such high evaluations for material because it is
generally accepted as the most important factor in chess. In the appli-
cation of this paper smaller values were used in the belief that if they
deserved greater weighting, the linear discriminant function achieved

by the training procedure would assign an appropriate weight. Overall
the attempt is to let the machine learn for itself if a large weighting
for material is justified. The feature used is a sum of values for each
piece of a side according to the following scale: queen = 90, rook =
50, bishop = 35, knight = 32.5, pawn = 10, king = 0. Although the king
is not given a value, he is not ignored. Another feature is totally
devoted to a measurement of terms relating to the king.

Features two and nine are an evaluation of the pawn structure for

a side. The feature is the sum of several terms. A negative value is
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assessed for each doubled pawn (a pawn is doubled if there is another
pawn of the same side in the same file). The assessment is made for
each of the pawns involved and if there should happen to be three pawns
in a file the assessment would be made three times. A negative value is
assessed for each isolated pawn (no pawns of the same side in immediately
adjacent files). Passed pawns (ones for which no enemy pawns are lo-
cated in the same file ahead of the pawn or in adjacent files ahead of
the pawn) are given a positive value that is a rather complicated func-
tion of how far the pawn has advanced, how well it is protected by its
own side, and how well the opposite side controls the square immediately
in front of the pawn. The exact nature of the terms making up the sum
for this feature may be found in procedure EVPAWNS of the chess program
in the appendices. The description given here should be sufficient to
indicate thc type of board considerations involved in the pawn structure
feature.

Features three and tern are a knight feature and consist of a sum
of terms involving mobility and development. A subtraction is made
from %he fe5£0ré'VéTUé'f6f each knight of a side that is still on the
back rank. A reward (addition to the feature value) is given for
closeness of each knight to the center of the board. Closeness to the
opponent's king is also measured and a negative value is assessed which
grows smaller as the knight gets closer to the king. Each term is
evaluated separately for each.knight.

Features four and eleven are bishop features. A bishop is penalized
if it is still in the back rank. It is given a value for square con-

trol which increases as the number of squares controlled increases. A
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square is controlled if it is directly in line of the bishop's movement.
Therefore a square reachable by the bishop and containing any piece of
either side is controlled by the bishop as are the intervening empty
squares. The value of these terms is found for each bishop of a side
and added to the feature.

Features five and twelve are rook features. As with knights, rooks
are assessed a negative value for distance from the opponent's king.

The assessment decreases as the rook gets closer to the king. Rooks
are given a positive value for square control which increases as the
number of squares controlled increases. Doubled rooks (two rooks of -
the same side in the same rank or file) are given a bonus. Each of
these terms, including the doubling term, is assessed separately for
each rook and is added to the rook feature for the appropriate side.

Features six and thirteen are queen features. The queen is given
a positive value for square control that increases as the number of
squares controlled increases. She is also assessed a penalty for dis-
tance from the opponent's king in the same manner that knights and rooks
are. The penalty decreases as the queen comes closer to the enemy king.
These two terms are added together to find the feature value.

Features seven and fourteen are a king safety term. The king is
given a bonus if he is in one of his corner squares (defined as queen
rook 1 or 2, queen knight 1 or 2, king knight 1 or 2 and king rook 1 or
2, which for white would be squares 1,9,2,10,7,15,8 or 16 respectively
in Figure 9). A term is also calculated which gives a measure of how
well the king is guarded by his own men with of course high values for
being well guardéd and low values for being unprotected. The king is

penalized for being in check or for having adjacent squares under enemy
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attack. These terms are all added to achieve the feature value for
king safety.

The fourteen features described comprise the pattern vector for
chess. Note that since each feature is a function of several terms,
the linear machine that will be constructed using this evaluation will
be a ¢-machine as defined in Chapter II. There are other features
which could be included or other arrangements of the terms chosen that
might have been used. The justification for the arrangement used is
that in using these terms in linear combination CHESS 4.5 does well,
and therefore the choice made should be a good starting point from
which later variations can be attempted.

Step 3. Choice for a Training Set. The choosing of a training set

began with the elimination of certain types of move from consideration.
For all boards, it was decided that en passent captures and castling
would be ignored. The justification here is that these two types of
moves represent special cases rather than typical moves. En passent
captures are seldom seen in transcripts of masters level games and the
typical advice for castling is to castle in the first ten or twelve
moves. This means that for en passent captures, training boards would
be difficult to find. For castling, the rule of thumb is not included
in the features used. Additionally, if these moves were to lead to
good boards, it is reasonable to assume that if discriminants are found
that lead to good boards they should work for en passent and castling
even if no such moves are considered in training. The basis for this
assumption is that moves are based on the worth of the resultant board
rather than the actual move itself and the compound linear machine is

trained by using the board patterns.
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Although this decision simplified the move generation module re-
quired in the program and somewhat reduced the number of patterns of
next boards to be considered, it did not help pick boards from which
to generate next boards. Another decision of elimination was made at
this point to reduce the field from which to choose. Many papers on
chess programs suggest that the opening game of chess is well under-
stood and documented and that it is reasonable to let the machire
store book openings and play from them for the first few moves of a
game (Shannon, 1950:272; Frey, 1978:77; Slate, 1978:102; Hearst, 1978:
177-8; Zobrist, 1973:97). Therefore chess openings were eliminated
for inclusion in the training set.

At this point there was still a wide universe to choose from.

Two possible sources for boards were represented by transcripts of
masters games and by books of chess problems. Representative boards
from both sources were selected. For the latter source, books of
chess problems, the typical presentation consists of a starting board
from the middie or end game and a statement of some goal which can be
obtained, such as gain of material advantage or checkmate. There is

a specified sequence of moves which is guaranteed to lead to the solu-
tion. If the player to move makes the proper move selection the op-
ponent has only one best move in reply so that each resultant board

in the solution sequence of moves can be used as a training board in
addition to using the original problem board. Examples of this type
book from which training boards were selected are those by Reinfeld
(Reinfeld, 1977, 1979). The other source of training boards, recorded
games between masters, required a different approach. Samuel used

records of checker games between masters by either storing all moves
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made by both sides if the game was a draw or by storing only the moves
of the winning side (Samuel, 1967:612). The assumption was that both
sides made good moves in a draw and all moves made by a winning player
were good. This approach does not seem justified for chess. Study of
transcripts indicates that masters sometimes make poor moves from which
they recover and that in any given game both players may make both

good and bad moves. This analysis is based on the move comment nota-
tion usually found in the transcript as given by another chess master.
These same move comments also clearly indicate when a good move has

been made. The decision was made to use such annotated moves as train-
ing board sources. The accomplishment of this was by means of modifica-
tion to a program by Bell that reads, makes, and stores chess moves
(Bell, 1979). The program reads games recorded in Eng]ish notation

and repeats the play. With minor modification the program was coded

to store only those boards from which a move was made that was annotated
as good. Each such occurrence resulted in a training board with a

good move indicated by an expert. Books used for source material for
this selection of boards were Horowitz (Horowitz, 1978) and Wade (Wade,
1973). It should be noted that the opinion of a move's worth may change
with time, but this is of no significance as long as a move once listed
as good is not later changed to bad.

It would have been reasonable to include in the training set sev-
eral hundred if not several thousands of boards. Instead only 85 boards
were used for two reasons. First, as an initial attempt it was felt a
small number should be tried to refine the pattern representation and
clustering techniques. Second, the hierarchial clustering technique

being used at the time required a core resident similarity matrix for
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all elements to be clustered. Even when stored in a space saving
triangular form, such a similarity matrix requires for storage on the
order of N2/2 positions or words, where N is the number of elements to
be clustered. Thus only a small number of boards were used.

Step 4. Find a Linear Move Discriminant for Each Board. This was

a simple attempt to find if there existed for individual boards linear
move discriminants. For each board, all next possible boards were gen-
erated using the move generation routine of the program (procedure
LISTMOVES). In practice a board was considered a possible next board
only if it was legal in the sense that it did not leave the king of

the player that must move in check. Using the pattern generation
modules, the patterns associated with each next board were generated.
The patterns were augmented and then all patterns except the one for
the board resulting from the specified good move were negated. This
resulted in a matrix ready for input to the Centered Accelerated Relaxa-
tion Method (CARM) algorithm as described in Chapter IV. The results
that came out of this step will be discussed in the separate results
section of this chapter.

Step 5. Formation of Board Clusters and Determination of Group
and Move Discriminants. As described in Chapter IV, a preprogrammed

hierarchial clustering technique is used at this point to form initial
clusters. This routine was run using the patterns of the training
boards themselves as input (as opposed to patterns of next boards) and
initial clusters chosen. Information on assigned cluster membership
was then used as input to runs of a program which attempts to find

discriminants for chess boards. One run of the program searched for
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group discriminant functions while the second run of the program
searched for a move discriminant function for each specified group.
The CARM routine was used in both instances in the same manner as
described in Chapter IV. Results from the two runs were used to at-
tempt to find group membership assignments leading to fewer errors and
the procedure of making two runs was repeated. Results are presented
in the following section.

Discussion of Results. The results from searching for linear dis-

criminants for chess boards are summarized in Tables 2, 3 and 4. Each
table will be considered separately and then comments concerning all
success rates and probability of error will be discussed. Results are
shown for chess problem boards, defined as those training boards re-
sulting from books of chess problems, and for chess game boards which
are those boards resulting from extraction of beards from games between
masters. Totals for all boards are also given.

Table 2 shows results from searching for a unique linear ruve
discriminant for each board. Results are cumulative, showing the
total number of boards for which the recommended move was rated nhiyne .
of all moves, the number of boards for which the recommended move wds
rated among the top five moves, among the top ten moves, and in the top
half or 50% of all moves for the board. Success for training boards
from the chess problem board source is always better than success for
boards from masters' games. It is conjectured that this occurs because
the chess problem boards involve well defined tactical considerations
of the type considered in the feature representation for the chess
boards. The masters' game boards on the other hand are boards for

which some commentator (usually also a chess master) noted that a good
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.Best Move | Best Move . Best Move i Best Move
Rated ! in in l in
Highest Top 5 Moves | Top 10 Moves Top 50%
Nr % | Nr S | Nr F ! Nr ¢

Chess Problem Boards 23

36 total boards 63.9 28 77.8 30 83.3 ! 31  86.1

Chess Game Boards ']7

49 total boards 34.7 27 55.0 37 75.5 43 87.8

A1l Boards 1
85 total 40 4711 55 64.7 ! 67 78.8 74 87.1

Table 2. Move Discrimination Results for Finding a
Single Linear Discriminant per Chess Board

move had been made. It is thought that such evaluation probably is
based not only on the current worth of the board but its potential as
well. Board potential is probably not well measured by the type of
features in the pattern representation used. If the information used
by the master could be defined, a feature could probably be designed
to measure appropriate factors and linear discrimination performance
on this type board could probably be improved. It should be noted that
this shortcoming of not evaluating what are probably strategic as op-
posed to tactical factors is common to most chess programs and not
unique to the technique used here. Even though this shortcoming exists,
the percentage of success indicates that linear discriminants can per-
haps achieve a single board success rate equal to that of Samuel's
checker program (as discussed in Chapter V) and therefore might be used
to play a good game. This statement must be taken generally since
Samuel's rate of error was for a much larger test set and did not in-
volve one discriminant per board. The percentage success with which

linear discriminants evaluate the recommended move among the top several
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moves indicates that the technique might be appropriate for pruning of
game tress and decision trees in general. Again, the results in Table
2 involve one discriminant per board rather than a single discriminant
s0 results must be interpreted accordingly. Results obtained warranted
further consideration of chess evaluation using the chosen pattern
features. A search for discriminants for a compound linear machine was
performed next.

Tables 3 and 4 give results for trying to find group discriminant
functions and move discriminant functions for each group, respectively.
Unfortunately time and computer resource considerations have resulted
in only preliminary results to date. The IMSL routine for hierarchial
clustering described in Chapter IV was used to find an initial cluster-
ing possibility for the chess boards. Complete linkage clustering was
used. The level of clustering chosen called for six groups of approx-
imately equal size (ten to fifteen members) and a seventh group of
three members. Exact cluster membership used is detailed in the ap-
pendices. The initial attempt to find group discriminant functions
using the CARM training algorithm in the manner described in Chapter IV
resulted in only two boards being classified correctly. The manner in
which the resulting discriminants classified the boards indicated that
an underlying structure of fewer groups with more members probably
existed. Although exact comparison was not made it appeared that a
higher clustering level from the possibilities revealed by the cluster-
ing algorithm should have been used. Higher is used in the sense that
larger clusters than those chosen should have been used. A second
trial for group membership possibilities was attempted. In this trial

boards were assigned to groups based on where the group discriminants

76




Total
Number Number
of Correctly % Correctly
Boards Assigned Assigned
Trial Group Set 1
Chess Problem Boards 36 0 0
Chess Game Boards 49 2 4.1
Total all Boards 85 2 2.4
Trial Group Set 2
Chess Problem Boards 36 24 66.7
Chess Game Boards 49 27 55.1
Total all Boards 85 51 60.0
Table 3. Results for Finding Group
Discriminants for Chess Boards
Best Move Best Move Best Move Best Move
Rated in Top in Top in
Highest 5 Moves 10 Moves Top 50%
Nr % Nr % Nr % Nr %
Chess Problem Boards
36 Total Boards 17  47.2 27 75 29 80.6 33 91.7
Chess Game Boards
49 Total Boards 7 14.3 18 36.7 22 44.9 29 59.2
A1l Boards
85 Total 24 28.2 45 52.9 51 60.0 62 72.9
Table 4. Results for Finding a Move Discriminant

for each Group of Chess Boards, First Trial
from the first trial attempted to assign them. This resulted in four
groups of boards varying in size from two to fifiy-two members. The
results in Table 3 show that the correct group assignment rate for all
boards went from 2.4% to 60% with corresponding success rate increases
for the two types of boards invoived. Table 4 shows results from trying
to find move discriminants for groups of chess boards. The data reported

is for group membership identical to that used in the first trial of
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group discriminant search. Success for evaluating the recommended move
is less than in the single discriminant per board case but results
still indicate a fairly high success rate in terms of rating the recom-
mended board among the top moves. These are the only results available
at this reporting. Although these results are for a very small set of
boards they indicate that a compound linear machine can be effectively
used to evaluate some chess boards. Further data must be accumulated
before more definitive statements can be made.

Some comments on the accuracy of the error rate displayed as an
estimate of actual performance error rate should be made. First con-
sider error from the viewpoint of estimated success rate. In address-
ing the two category classification problem, Nilsson points out that due
to the geometry of the situation there is a high probability of being
able to find a linear discriminant function any time the number of
patterns involved in the attempt is less than or equal to twice the
number of weights involved (Nilsson, 1965:38-40). Since the move dis-
criminant function is a two class problem and there are fifteen weights
needed for discrimination of the 14-tuple weight patterns used, this
means a working discriminant function might be found for an individual
board from which only a few moves are possible regardless of the actual
value of the features. When a move discriminant for a group is found,
where there are several hundred patterns involved, the discrimination
achieved is most likely due to the separability of the data. These
results are not directly extensibie to multiple class case of separation
of groups (Niisson, 1965:40). Now consider whether the error rate on
the training set(if accepted)is a good measure of what the true error

rate of the machine would be for the complete game of chess. Again
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the major work in this area addresses the two-class problem. Foley has
written a paper concerning the use of the design set or training set
error rate as an estimate either of Bayes or test-set error rate.
Foley's work applies specifically to the two-class problem with multi-
variate normal distributions. The pattern classes for chess are dis-
crete and are by no means expected to be Gaussian in nature, but the
results are mentioned as one of the few theoretical measures available.
Basically Foley shows that if the ratio of samples per class to the
number of dimensions is less than three, the design set error rate is
a poor estimate of the test set or of the Bayes error rate (Foley,
1972). Keeping in mind that these results are for a different form of
problem than chess, they still suggest that unless the number of pat-
terns used is large, the achieved error rate with the training set may
not be a dependable estimate. Intuitively this result parallels
Nilsson's statements concerning number of patterns and dimensionality.
If nothing else, the two results together suggest that the number of
training patterns must be several times larger than the number of
features for dependable results. For the typical chess board used in
this effort there are between 35 and 40 possible training moves per
board. Therefore results for finding a single linear discriminant per
board are on some borderline of dependability. Results for finding group
discriminants for 85 boards and finding move discriminants for groups
where several hundred boards comprise the next board training set are
on the dependable side of the borderline.

One other source of possible error should be mentioned. In search-
ing for group discriminants, the method used involved separating each

group from all octher groups simultaneously through use of linear
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discrimination. This technique will only converge for the restrictive
case in which each group is linearly separable from the group consisting
of all other groups. This is distinctly different from the case of
being indivicually separable from each of the other groups. Nilsson
states a training theorm and algorithm for multiple class cases that
guarantees convergence in the case that linearly separable groups of the
latter sort do in fact exist. The technique involves correcting not
only the group discriminant function for the group of which a pattern
is a member, but also corrects the discriminant function of the group
to which a nattern is erroneously assigned (Nilsson, 1965:87). The °
accelerated relaxation method used in this paper corrects only the
discriminant of the group to which the board belongs. However, if

the method were modified for the multiple class case to correct dis-
criminant functions in the same manner as Nilsson's procedure, con-
vergence should be achieved when a solution exists. This change should
be made to the version of the algorithm that searches for group dis-

criminants.
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VII. Conclusions and Recommendations

Conclusions and recommendations are made in two areas. The first
area covered will be conclusions and recommendations concerning further
exploration of the use of linear discriminants to model human decision
making in general. The second area covered will be recommendations con-
cerning attempts to evaluate chess boards using linear discrimination
techniques.

From the viewpoint of initial results the use of linear discrim-
inants to model human decision making in game playing holds promise of
some success. Further exploration should be conducted using a larger
training set to allow the drawing of definitive conclusions about the
success rate of this technique for game evaluation. The training set
used should be several times larger than the number of features em-
ployed to insure that any success is a result of successful linear dis-
crimination and not a result of the geometry of the problem.

The use of a hierarchial clustering technique should be reap-
praised. The major reasons for use of this technique were convenience
and the resulting large number of possible clusterings the technique
usually suggests. However, the technique requires large storage and
time allocations as the number of samples to be clustered grows. Since
the purpose of using a clustering technique is to achieve an initial
grouping of boards which will be refined, a less resource consuming
clustering technique should provide adequate results in a more efficient

manner.
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Although preliminary results are by no means conclusive, it is
recommended that some decision making environment other than game play-
ing be chosen and that data be gathered for use in attempting to model
the decision making process involved using linear discriminants.

Actual modeling should follow further study of the linear discrimination
technique in the game playing environment, but data collection should
begin as soon as possible because a long time period may be necessary
for the effort. No specific area for study is recommended but some
field involving resource allocation decisions is suggested on the con-
jecture that more is understood about the factors involved than in some
other areas of management. Current study groups involved in modeling
the decisions of military commanders should be contacted as a possible
source of data.

Three recommendations are made concerning further work in applying
the compound linear machine approach to the game of chess. The accum-
ulation of values for features of chess boards should be modified. The
current evaluation appraises terms considered important but imbeds the
information in a feature that is a sum of terms for a given piece. The
features should be changed to summations of 1ike terms for all pieces
into a common feature (such as a mobility feature, a square control
feature, or the like). This recommendation should be implemented with
a second recommendation that the dimensionality of the pattern vector
be allowed to increase and that the number of patterns in the training
set be increased significantly. Results from using such data could then
be explored with dimensionality reduction techniques such as Fischer's
linear discriminant to achieve an optimum feature set. The final

recommendation is that a chess program be developed to implement the
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decision process developed using the compound linear machine approach.
This would allow testing of the technique against both human opponents
as well as other chess programs and would thus provide a more practical

as well as rigorous comparison of the compound linear machine approach

to other techniques.
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APPENDIX 1
PASCAL CODE FOR CHESS BOARD EVALUATION AND RELATED ROUTINES
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poe

(*SU+%)

PROCRAIY CHESSDOC(INPUT,OUTPUT);

(*THE FOLLOYING POUTINE< AMD DATA TYPES ARE INTENDED OMLY YO
GIVE THE READER THE FLAVOR OF HOU! THE CMESS "OVE GENERATION
MODULES ANMD EVALUATION "ODULES OPERATED., ALTH B THESE
ROUTINES ARE EXTRACTED FRO!! ACTUAL PROGRAN, IJITIALIZATION
AND UTILITY DERUGGIMG AID PRINTING
ROUTIMES ARE OT INMCLUDED. THE INPORTANT ROUTIMES ARE
EVPALS AMD EVENDFTRS HWHICH DENONSTRATE THE EVALUATION OF
A CHESS S0ARD, OTHER RQUTIMES IMNCLUDED PROVIDE PRACKGROUMD
INFORNATION, THE OPERATION OF ALL MOVEROUTIMNES IS BASED ON
THE LEGAL CHESS PROGPANS SUGGESTED BY DELL AI'D THE INTERESTED
READER IS REFERRED TO HIS ARTICLES (RELL, 197N AMD 19?0) THE EVALUA-
TION ROUTIMNES ARE BASED OF THOSE USFD EY CHESS 4.5, UAPTER
THIS THESIS AMD/CR SLATE AND ATKIN'S DESCRIPTION (SLATE 197‘)
THE CODE 1S PASCAL AS DESCRIBED FOR THE CDCO600 (ANMD CYBER SERIES)
BY JENSEN AMD NIRTg)(JEHSEN, 1979).

COMST
BROLMGTH = 64;
UHITE =1;
BLACK = 2;
NFEATURES =
MPATTERNS = H
YPEXTNPATTE RNS = 1000;

CHSSAR = 0..BRDLMGTH;

20;
190

FTRVEC = AQRAY E1.. MFEATURES] OF REAL;
PATVEC = ADRﬁYE ..NPrTTcP'Sg RE/L;
PATHAT = ARRAY(1,.t'°ATTERNS] OF FTRVEC;

PATFILE = FILE OF FTRVEC;
INTVEC = ARRAYC1..MPATTERMS] OF INTEGER;
EXTINTVEC = ARRAY(1..EXTHPATTERNS] OF ITEGER;
EXTPATVEC = APRAYC1..EXTHPATTER!S] OF REAL;
PLAYER = WHITE..BLACK;
CHSHEM = (P, VI, 18, MR ua,\K, BP,BN,BR,8R »B0, 8K 1T CK) 5
(xUHITE PAT OnITeE Zn1but’. . ceLfex’wifs, fiul PIECE®)
(*CK IS SPECEAL r'OTATION (SE6 In SEA”CHf!G FOR u:ne MOVES*)
(*STANDING FOR CHECK TO I!'DICATE THAT IF A KING MOVED TO%)
(*SQUARE !ITH VALUE CK IT WOULD BE I CHECK*)
PCARY = ARRAY[O..é] OF CHSHMEN;
CHSSET = SET OF CHSHEM;
POS = ARRAYL1..14] OF CHAR;
BOARD = ARRAY[O..BRDLHGTHJ OF CHSHEN;
PUMARY = ARRAY[1..8,0..91 OF € OLEAN;
PUMBOARD = AOPAYE”HfTE..FLACK] of Prifiary;
(*REFERENCE PAUN SOUARE AS PU'MBOARDLSIDE,RANK, FILEI®)
KGSG = ARRAYCEHITE..BLACKJ OF CHSSOR; (*SCUARES LINGS ARE OM%)
(*FOR EASY REFERENCE AMD MULTIPLE SEARCH AVOIDAt!CE*)
BRDREC = RECORD (*OF BOAPD AMD CURRENT GARE STATUS,INTERMAL*)
BOARD; (+INTERMAL CHESS BOARD*)
woas : UHITE..BLACK; (*SIDE TO MOVE,YHITE=1,RLACK=2%)
CHK : BOOLEAM: (*TRUE IF SIDE TO NOVE In chEcys)
WKR = BOOLEAM® (*MITE KING POOX,TRUE IF 'OVED*)
WOR : ROOLEAM: C+\IHITE QUEEN ROO%, TPUE IF MOVED®)
UKK : BOOLEAI; (*HITE KING DITTO®)
BKR : BOOLEAM;  (XBLACK KIMG ROOK DITTO*)
BOR : BOOLEAM: (*BLACK QUEEN ROOK DITTO*)
BKK : BOCLEA"; (*SLACK KItG DITTO*)
{*zgsv%3u§ SIX VARIABLES USED TO DETERMINE CASTLIMG
*
EP : CHSSQR; (*LAST SQUARE MOVED TO FOR CHMECKING ENPASSENT
CAPTURE POSSIEILITIES*)
PB : PUNBOARD; (+PAl'!I STRUCTURE ASSOCIATED U'ITH D)
KINGSQ : KGSO: (*KI!G SOUARE ARRAY ASSOCIATED VITH B8#)
REF : INTEGER: (*BOARD REFEREMCE MUMBER¥)
END: C(*ERDRECH)
Taaonet = RECORD
o BRDR

£C:
:+ CHSSOR;
APRAYCY..4] OF CHAR;
RDREC*)

T RTNTY

nv&n :
END; +is
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A (* GLOBAL VARIABLES *)
R
(*Gkogé%sngIABLES FOR CHECKING SIDE MEMBERSHIP AND TYPE OF
*

1
SIDESET : ARRAY[UHITE..DLACK] OF CHSSET;
CrAN INTIALIZATION ROUTINE SETS SIDESETCUHITE] TO WHITE
PIECES AI'D SIDESELELACKY TO CLACK PIECES*)
PCSARY : ARRAYCWHITE,.SLACK] OF PCARY;
(*USED TO STORE VALUES OF TYPES CF PIECES UITH POSITION
1 THROUGH 6 SCUSL TO PAUM KIITGHT (BISHOP ROOK CUEE!! KI1G
OF APPROPRIATE SIDE In THAT omrpeR. SET BY InfraLizATIow
o ROUTINE MOT INCLUDED HERE®)

*)
(#%% CHESS NOVE FUNCTIONS AMD ROUTIIES AS UELL AS ROUTINES w##x)
f*** SUPPORTING THE[ %) s
*dk *
(* *)
g::* HOVE FUMCTIONS HEXT #w#w)
THE_FOLLOMING FUNCTIONS M ME,E,SE,S, S 11, AMD I'i ARE THE EASIC
FUNTIONS BY VHICHM ALL creSs BIECE 6vs€ ARE DEFINED. THE DIRECTIONS
CORRESPOND TO CO:IPASS oxp'crxo"s il A CHESS BOAPD ':NERE TORTH IS
TOUARD BLACK'S BACK PAME AI'D SOUTH IS TO'U'ARD U'MITE'S DACK RANK
PRIMARY USE IS BY PROCEDURES YPi:0VE,PPIIOVE, MIOVE, ETC.
WHICH ARE THE CHESS PIECE :IOVENENT RouT TNES

kdeke)
(wx ALL LEVEL 1 %)
FUNC;%g?NN(SG:CHSSQR ) : CHSSGR;

IF (SA>=1) AMD (S0 <=56) THEMN N:=S048 ELSE N:=0;
EMD; (*OF 1 FOR MORTH HOVE*)
runcrroﬁ ME(SO CHSSQR ) : CHSSQR;

IF ((gg>-1)sAbg (5Q<=56)) AMD ((SQ 0D 8) <> 0) THEN
ELSE

=0,
END '(*OF NE FOR MORTH EAST MOVE)+)
FUNC;%%? E(SQ:CHSSAR ) : CHSSQR;

IF (SQ 1100 8) <> O THEN E := SQ+1 ELSE E:=0;
END ; (#OF E FOR EAST HOVE*)
FUMC;égH'SE(SG'CFSSGR ) : CHSSGR;

IN
IF ((§g>—g)sawg (SQ<=64)) AnD ((SQ NOD 8 <> 0)) THEN

= 0:

END; oF SE For souTH EAST MOVE®+)
runc;égQNs(sn tCHSSGR ) : CHSSQP

IF (SQ>=9) AND (SQ<=64) THEM § :=SQ-8 ELSE § :=0;

END; (*OF S FOR SOUTH MOVE#)
ruuc;égﬁnswtso :CHSSGR ) : CHSSQR;

If %(§8>=9) sng (S0<=64)) AND ((SQ MOD 8) <> 1) THEN
ELSE SW i= O o
END; (% OF so FOR SOUTH WEST MOVEw)




FORBéé?ﬁHITE TO BLACK DO
(xCALCULATE INPORTAN CF FACTOR BY UHICH TO NULTIPLY*)
(*GUARDEDMESS FPCTOP*
IF I=UWITE THSD' TENPOPNT:=3LACK ELSE TEHPOPNT"EHITE'
IF QUEENOJQPDETEHPOP"TJ THEH K =2 ELSE K:=0;
K K + HONPAUNPCSTTENPORHTD <=2
%: <D THEN K := 0;
————
(*CALCULATE GUARDEDMESS FACTOR*)
(*K 111G 1107 IN 01N *CORNER' PENALTY*)
IF I=WHITE THEN

IF BRD, VIHGSQ[UHITEJ m 0,2,7,8,9,10,15,161 THEN
TERPVAL 0.0

ELSE TE! PVAL 1= =3.2
ELSE (¥I=3LACK*)
1F (BRD KINGSQTBLACKY 1In_T49

55,3657 ,587)

50
R ((BRD.KINGSQLELACKI=635 0f (é KIAGSQLBLACKI=64)) THEN

TEHPVAL += 0.0
ELSE TEMPVAL := =3.2;
(*NO PAUII IN OUM FILE PENﬁtTY*)
TERPFILE := FIL(2RD.KINGSOLI
IF PUMPERFILCI,TENPFILE] < anw TENPVAL : =TEXNPVAL=64.1;
(*NO PAYN IM FILES oN SIDE or KING PEMALTY*)
CASE TEMPFILE
1 IF PUNPEPFILCI TENPFILE+1] < 1 THEN TEPPVAL'-TEHPVAL-3.6'
s1f (BUNPERFILCI, TEIPFILE 1)< 1) AMD
fPGnﬁEéFIL[I TENPFILE+1] < 1) THEN T‘PP"AL =TENPVAL=3.6;
8:If ?vggear LCf,TENPFILE=1] < 1 THEN TENPVAL:=TEMPVAL-3.2;

END
(%101 fALCULATC FULL XI6 SAFETY TO DATE®)
(*EQUAL TO InpopTAncc TINES GUARDEDMESS*)
TENPVAL := K*TENPV
(*NOY ADD PEMALTY roﬁ ADJACENT SQUARES UMDER ATTACK AND/OR%)
(*KING CURRENTLY IM CHECK*)
(*sroas FINAL VALUE AT SANE TINE®)
F I=PLYR THE} OFFSET:=0 ELSE COFFSET:=7;
E§g+0FFSETJ-~TEHPVAL + KINGATKSCII;
FCNFUSED] := 1.0; (*USING AUGNENTED WEIGHT VECTORS#*)
END: (*EVBRDFTRS*)
BEGIN {xDURMNY PROGRAH BODY*)

D.
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ROPISIT COMPUTATION, S-TAXIDISTANCE FROM OPPOMEMT'S*)

(

5 ET] := FL+OFFSET) +
TAXIDIS(PCREC. O, BRD YIHGSGETEHPOPNTJ))

(*CENTER TROPISH ancuLnfzon - 2%xTAXIDISTANCE FRON®)

(*CEMTER OF POARD AT 4.5,4.5 ro KHIGHT*)

(+TAXIDIS OMLY GOOD FOR €r§SQRS,CAH'T USE HERE,DO HARD HAY+)

TENPVAL := ABS(L.5 - TENSFILE):

(*THAT'S HORIZOMTAL DISTANCE "ov V‘QTICAL*)
TENPVAL := TENPVAL + A2SC4, s fEnPRANK)
FC3+0FFSETJ'-FE3+OFFSET] + 4 - 2wTE1PVAL,
e S B e e

F PCPE PC=1" D Q P (PCR ) =
! R ((P E&E ”HS AND (Rnﬂ"(PCPEC {0M,BLACK)
F[O ser+3i t= FLOFFSET+3) - 7;

END;
va, gg (*BISHOPS TERIN IS FEATURE 4+OFFSET®)

NO"PAU"PCS[TEhPPLYR] 2= MONPAUMPCSUTENMPPLYRY + 1:
(*SQUARE COMNTROL COIPUTATIO”, £ SQUARES COMTROLLED KOT*)
(*CONTA HING FQIEPDLY PA”“G 17NUS 7%)

R J:=1 TO PCREC.TOOLCl,SO DO
IF PCREC. Too[J] PC & PCSAPY[TEWPPLYR 1) THEN
FCOFFSET+4] := FEGFFSCT+aJ + 1.0;
FCOFFSET+4] := FEOFFSET+4] - 6
(*DEVELOPIENT, ~11 IF O B AMK
1F ((PCREC, PCEVR) ALD (QPvK(°CR EC. Od UHITE)=1))
OR ((PCREC.PC=ER) AMND (RA"k(PCPEc 0M,BLACK)=1)) THEN
FCOFFSET+4] := FLOFFSET+4) -

EllD;
WR,gg I(*ROOK TERM IS FEATURE 5+0FFSET*)

NONPAUMPCSCTENMPPLYR] := NONPAUMPCSITENPPLYR] + 1;
(*SQUARS COMTROL CCNPUTATION®)
ECS+QFFSET]:=F{S+OFFSET] + PCREC.TOOLCI.SO;
(*KING TROPISN COJPUTATYOM ACTUALLY PEMALTY FOR DISTANCE®)
(*FROI OPOMMENT'S KIIIGH*
F[S+OFFSETJ"F[5+OFFSETJ ~ TAXIDIS(PCREC.OM,
BRD KINGSQLTENPCPMTY);
(*BONUS CONPUTATION FOR DOUBLED ROOKS*)
IFDDBLDPC(PCREC) THEM FUS+OFFSET]:=F[S+OFFSET1+8;

EN
Ha, gg' (*QUEEN TERM IS FEATURE 6+OFFSET¥)

NONPAUNPCS[TEHPPLYR] 1= NONPAUNPCSCTEHPPLYR] +1;
QUEENOMBRDLTEMPPLYR) := TRUE;
(*SQUARE COMTROL COMPUTATION, NU!PER OF SQOUARES COMTROLLED*)
(*THAT ARE MOT ATTACKED BY Of OMMENT'S PIECES®)
FOR_J:=1_YO_PCREC,.TOON7],SC DO
IF_nNoT ATVDFPOH(B"D 3,PCREC, TOOLJ]. SO, PCRECATKDFR
TEMPPLYR) THE! FLOFFSET+6):=FLOFFSEF+6] +1;
(+KING TROPISH CONPUTATION, ACTUALLY PENALTY FOR DISTAMNCE=®)
(*FROJ OPO!HEN 'S KIhG 3
- FC6+OFFSET):=FL6+OFFSET) - TAXIDIS(PCREC.ON,
DBRD.KIHGSQ[TEHPOP"T])

13
UK,BK (*KING TERK IS FEATURE 7+OFFSET*)
(*EULL FACTOR CALCULATED LATER,COUMT ATTACKS ON FOR HOux)

FOR J:=1 TO PCREC.TOOC0J.SC DO
1F ?S§sc EOO[JJ PC=CK THEN (MIOULD BE IN CHECK #)
KIMGATKS TEWPPLYQJ"KIHGATKStTErPPLYPJ-1-
IF ATKDFROIICERD, N PCREC . 03, PCREC, ATKDFR, TENPPLYR) THEM
(*THIS K6 CURREDITLY 14 o
DKINGATKS TEHPPLYRJ‘*KINGATKS TEMPPLYRJ-S

EN
€N ‘*S:SE 0007 THROUGH PIECES ON EOARDS)
: H N B *
(*ACTUﬂL EVALUATIOM OF KING FEA%UPE TAKES PLACE MOY SINCE =)
(*NEEDED FACTORS ARE CALCULATED BY LOOKING AT EVERY PIE ECE «)
(*ON THE BOARD*)

21
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VALUEY := VALEHHITE};
VALUER := VALEBLACK]:
END; (*EVPALNS*)

PROCEDURE EVBRDFTRS(VAR BRD:BRDREC; VAR PLYR:PLAYER; VAR F:FTRVEC;
VAR NFUSED: INTEGER)
(#%*%PROCEDURE EVBPD?TPS(VAR BRD:BRDREC;VAR PLYR:PLAYER; VAR F:FTRVEC;
(*+%x VAR MFUSED:INTEGER)  *)
(*%xTHIS ROUTINE GEMNERATES THE PATTERM FOR THE CHESS BOARD It ROARD)
(***RECORD BRD “ITH RESPECT TO PLYR., THE PATTER! IS RETURMED IN %)
(*+*VECTOR F YITH THE MUPNBER OF FEATURES GEMERATED SPECIFIED IN#)
(***rsrupn VARIACLE "FUSED-MUPRER OF FEATURES USED®)
VAR_1,J K OFFSET, TEUPPAIK, TENPFILE : INTEGER;

TEQE%L?R TE%FQE'T ,0PNT  : PLAYER;

NONPAUNPCS s AOPA?[PHITE..PLAC”J OF IMTEGER;

QUEEMONBRD : ARRAYCHITE . .9LACK] OF POOLEANS

PUNPERFIL: ARPAYCUHITE. .BLACK,1..3) OF INTEGER,
(*FOR COUNTING PAU PRESEACE "IN FILES #*)

KINGATKS: ARRAYLUNITE. .DLACK] OF REAL; C*FOR SAVING*)
(*KING ATTACK FACTORS*)

ATTACKED :B00LEAN;

TEMPVAL : REAL;

BEGIN

(*HOUSEKEEPING, SETUP#)

IF PLYR = YHITE THEN OPNT := DLACK ELSE OPNT := WHITE;

NFUSED := 15;

FOR I:=1 TO QFUSED DO FLIJ := 0.0;

(*INTTIALIZE 'COUNTAZLE' CHARACTERISTICS BOTH SIDES*)

FOR_I:=UHITE TO ELACK DO

QUEEhONBRDCIJ"FALSE
HONPAUNPCSEI]:=0;

FOR J:=1_TO 2 DO PUNPERFILLI,J]:=0;
KINGATKSCIJ =0.0;

(*NOU éVALUATE FEATURES BY LOOPING _THROUGH POARD *)
FOR _1:=1 TO BRDLNGTH DO IF BRD,BCIJ <> NT THEM

BEGIN
PCREC.PC := BPD.BL1];
PCREC, 0! := I;
(*SET OFFSET TO STORE FEATURES DEPENMDEMNT ON WHO PLYR I§*)
(*AND SET UJHO IS OPPOHENT AMD WHO IS PLAYER FOR PIECE®
(*BE1NG CONSIDERED*)
If 8RD.BLI] IN SIDESET[PLYR] THENM
BEGIN
OFFSET := 0;
TEMPPLYR := PLYR;
TEMPOPNT := OPNT;
END
ELSE
BEGIN
OFFSET := 7;

TENPPLYR := epnt;
. TENPOPNT:= PLYR;

END;
(#==112-NOTE THAT AT THIS POIMT THAT PCREC.PC IS ASSURED*)
(#==) 1==OF BELONGING TO SIDE TEIPLYR#)

TEMPRANK t= RAMK(PCREC,OM,TENPPLYR) ;

TEMPFILE := FI (Pcasc.ov fE"PPLYR )

(*PLYR'S VALUES FEATURES -7e OPNTSS VALUE FEATURES 8=14%)
xsvnovescpca;c PC,ORD,E PCREC, TOO, PCREC.OM ;

*FEATURE 140FFSET IS TOFAL POVER FOR A SIDEw)
FC1+0FFSET) := FLI+OFFSET) + PCVALCPCREC.PC);

CASE PCREC.PC ©

WP,BP: (#PALM) TERM 1S FEATURE 2+OFFSET#)

C*EVALUATION IS TEMPCRARILY DOME ELSEUHERE#)

(#BUT KEEP TRACX OF PAUMS PER FILE FOR LATER KING EVAL®)

runvsarthTs 1PPLYR TENPFILE] := PLHPEPFILETE!PPLYR,

TENPFILE) +
UN,gNéléikﬂlGHTS TERH iS FEATURE 3+OFFSET™)
NONPAWMPCSCTEMPPLYR) := NONPAWNPCSCTENPPLYR] + 1;

-
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LACK'S PAUN STRUCTURES IN VALUEY AND *)

' e

T *)

R3, ! T:INTEGER; (*S=SIDE,F=FILE, R1= RA?K VAR 1%)

(*R2% anh VAR H<fF1Le ninds 1,rp1=FiLe PLUS 1,1=GEN PURP.*)

VAL : ARRAY[UHIT £CK] OF REAL: (wiiopK vALusc*)

\RKSQ:CHSSOR; (*FQR USE In CHECKING ATTRIPUTES OF PA"NS*)
OPS:PLAYER; (*ORK VARIAELE FOR OPPOSITE SIDEW)

TEMP1,TENPS, TENPT:REAL: (%UORK VARIAPLES*)

STILLﬁAssso STILLISOLZTED DOUSLED:BOOLEAN; (*PAUN ATTRIBUTES*)
ATKD :BOOLEAD: (*PAUN CONDETION®)

ATKARY: rnronﬁnnv- (*FOR CHECKING ATTACK OMN SQUARES IN FRONT#)

(*OF PAUNS*)

TEJ:=0.0; W\L[CLACKJ =0.0;
MITE T0°ELACK DO

1 ;0 g 0

2;15 PB[S R1 FJ THEM (*PAWM ON THIS SQUARE,FIND ITS VALUE®)
ILLPASSED := TRUE STILLISOLATED := TRUE; DOUBLED := FALSE;

:= F=1; FP1 +1;
xr S=UHITE’ THEN ops--BCACK ELSE OPS:=WHITE;
FOR R2:=2 TO 7 D
BEGIN
R3:=9-R2; (*COMVERTS TO OPS RAMX STRUCTURE®)
IF NOT DOUELED THEM IF R2<>R1 THEM
DOUSLED ':= BRDR,PELS A2 F]
IF (R2 5 R1) AYD STILLPASSED” fiien
STILLPASSED'-(VOT (snon..‘ccps‘wz F17 OR
8ROR.P2lOPS A2, F] OR CRER,ACEEPS,R3,FP11)))
(*STILLPASSL6"( 10 OPPOLENT'S PAVAS AHEAD O ANY OF#)
(+THREE FILES CENTERED OM THIS O[IE*)
IF STILLISOLATED THE!
STILLISOUATED := (10
(BRDR PBCS R?éFﬂ1] OR BRDR,PBLS,R2,FP1));
(+STICLISOLATED:=1!0 FRIEIDLY PATNIS TN RANK R2%)
(+IN FILES ON EITHER SIDE OF THIS OMNE®)

EN
BOUALED THEN VALESI := VALLS) - 8;
STILLISOLATED THEN VALLS) := VAL[SJ - 20;
STILLPASSED THEN

ass( CALCULATE PASSED PAUN BONUS*)

TEMP1 =2,3; (*BASIC PASSED PAYN NMULTIPLIER®)

IF S=BLACK' THEN ”RKSQ'-(( -R1)*8)#F-8

ELSE VRKSO:=(3%(R1-1))+

C*WRKSQ MNOY EQUAL TO SQUAR *IN FROMT® OF PAWN'S*)

(*MOVENENT*)

ATKD : =ATKDFROI(BRDR . B,1RX SO, ATKARY,S) ;

1F BRDR.BCURKSO) IM si TtOPSJ ThHEN
(*SQUARE If! FRONT or PAun IS BLOCKED BY+)

it
L
£
’

*#%0F BOTH YHITE'S AMD
***VA%UEB RESPECTIVEL Y
1, Pl

5,8
£, 8L

=l =t =4
“fNmnTn

(*OPPONENT 'S PIE CE*)

1
{3 ATLD TPEN TEHP1' ?eﬁp
(*SQUARE IM FRONT OF pAwn IS ATTACKED BY +)
(*OTHER SIDE*)
ELSE IF ATKARYLN),SQ>0 THEM Tswp1--rsnp1+o 3;
(*PAUM PROTECTED EY 0''f SIDE+)
VALES) := RI#R1«TENP1 + VALCS);
(*PASSED PAlM VALUE IS RAK nufieer+)
(trxn S FIrs L vAL GF TE:P1+)
END; (*PASSED PATP sonus CALCULATIONS)
é;§°” tgecx ADVANCENENT BOHUS*
1,2: (*NO BOI'USH);
3: VALCSI:=VALESY + (R1-2)#3.9
4: VALLS):=VALLS) + (R1=~2)%5.4
S: VALLSI:=VALLS) + (R1-2)#7.0%
9: VALCS): =VALt§) + (R1-2)%2.3
I 4
;
ND;

.
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gxﬂDIS'VDIS ¢REAL;
VDIS ARS( (((S01-1) DIV 8) - ((SG2-1) OIV 8)) );
HDIS := ABS( (((5Q1-1) 1'0b 8) - ((s02-1) hoDp 8)) );

TA :
EMD; (*TAXIDIS*)
FUN&EI?N PCVAL(PC:CHSHMEN) : REAL;

CASE PC OF
BP:  PCVA

L:=10;
NN,BN- PCVAL:=32.5;
\8,88: PCVAL:=35;
HR BR PCVAL:=58;
va,B8a PCVAL:=90}
1K BK HT. PCVAL:=0.0;

eN; (%CASE®)
EMD s (XPCVAL*)

FUNCTION DBLDPAUN(VAP B:BOARD; VAR SQ:CHSSQR) : BOOLEAN;
VAR ITEMP,J:INTEGER;

BEGIN
DBLDPAU := FALSE'
ITEMP := $Q fop 8f

FOR J:=0 TO 7 DO
IF (J%8 + ITENP) <> SQ THENM
IF BLJ*2 + ITENP] = BLSQ]) THEN DELDPAWM:=TRUE;
EMD; (*DBLODPAUIX)
FUNCTIOM DCLOPCCVAR PCREC:PCSTATREC) : ROOLEANM;
(*%*FUNCTION DELDPC(VAR PCREC:PCSTATREC) : BOOLEAN®)
(**xxTHIS ROUTIME CHECKS PCREC TO SEE IF THE PIECE AT PCREC,OM+)
(+**1S DOUBLED LHICH IS DEFINED AS TU0 PIECES OF THE SANE+)
(*x+xTYPE IN THE SAIE RANX OR FILE WITH MO INTERVE!NING PIECES.%)
(*k«THE ROUTINE LOOKS STRICTLY FOR DOUSLIHG AMD LOULD NISS*)
(*xx "TRIPLING" OR LARGER HUIBERS.*)
(***FUHCTION IS TRUE IF DOUBLING IS FOUMND®)

LABE
VAR 1 IﬁTEGER'

BEGIM
D°LDPC := FALSE;
FOR 1:=1 TO PCREC TOOLDJ.$Q DO

IF PCREC.PC = PCREC. TOOEI] PC THEN

BEGIN DELDPC:=TRUE; GOTO 1 END;
1: EMD; (#DBLDPCx)
PROCEDURE DEVPHIBRD (VAR BRDR:BRDREC);

(*%*PROCEDURE MEYPUNBRD (VAR pPDR..,RDREC)- *)
(***THIS ROUTIME GE!I'ERATES THE EOOLEAM PAUM qonRo CORRESPOMOING*)
(x%xT0O THE PAWM STRUCTURE OF BOARD BRDR.B AND RETURNS 1T IN BRDR.PB*)
geEI sINTEGER;

(*SET pury FILES 0 AND 9 FALSEx)
Reéé—1 T0 80
BROR.PBCYWHITE,I,0]:=FALSE; BROR,PRCUHITE,I,9):=FALSE;
BRDR PB[BLACK, 0] FALSE, BROR. PB[ELkCK, 9] -FALSE'

(*SET ﬁAkKS 1 AMD 8 FALSE SINCE THEY CAHNOT COMTAIN PALIMS*)
FOR 1 Eé;O 0 9 DO

BRDR. PBEUHITE »1,11:=FALSE; BRDR.PRCUHITE,8,I]:
BRDR PEBLBLACK 1 11:=F ALSE, BROR,PEBLELACK 8,13:

END
(SCHEC598QUA§ES 8N BROR.B THAT CAN COMTAIN PALIMS*)

BEGIN
BROR. PS[VHITE RAMK(I,UHITE) ,FIL(I, VHITE)] :
BPDR PB[SLACK RARK(I, BLACK) FIL(I,BLACK)] :

(*ﬁsupvnspo*>
PRO Ebﬁne EVPAUNSC(VAR BROR:IBRDREC; VAR VALUEY,VALUEB:REAL);
***PROCEDURE EVPAUNS (VAR L BRDREC;
avx VAR VALUE!!,VALUEC:REAL) = *)
/ (*#4THIS ROUTINE’ EVALU ERE6 THE PAU'N BOARD ERDR.PR, HICH SHOULD HAVE®
(x#«BEEN GENERATED FROY THE DOARD 1IN BRDR, AtD REFURNS THE VALUEW)

n
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Z2WRKSO:=E(FR) :
é:uexso:=s§(rRS
SURKS0:=S(FR);
6:UIRKSQ:=SU(FRY;
7:URKSQs=\I(FR)
8:URKSO:=M(FRY;
END; (*CASE*)
1f upkSa <> 0 THEM

IF (BC PKSQJ‘UK) OR (BL[WRKS@J=BK) THEN

NUHATKS =MUPATKS+1;

FRARY[MINMATKST, so--upkco-

FRARY['UHAT sJ. =gL'rx§07;

IF ROT SAVEATE "THEN SAVEATR:=(rOT (BLURKSQ] IN
DSIDESET[PLYR]))

END;: (*CHECK OF KING ATTACKSw)
FRARYL02.50: =IUDATES;
ATKDFRON := SAVEATK;
END; (*ATKDFPOW*)
(*** END I'OVE ROUTIMES *%*)
PROCEDURE MEUCPED(VAR RRD:3NRDREC; VAP REFF:INTEGER);
(**xPROCEDURE PE”“"D(VAP FPD'""DREC' VAR REFF: IITEGER)' *)
(»**THIS POUTINE INTIALIZES THE CPDREC ROARD FCR' THE #)
(***BEGINMNING OF A GAME WITH BRD,REF SET TO REFF»)

VAR

EG%ﬁJ,K:INTEGER;
(*FIRST INTIALIZE THE DOARD 1ii BRD.Bw)
(*BLACK_BACK RO FILLED FIRST+
BRD.B[57]):= BR; BRD.R(58):=CN; BRD.RCS59]:=rR; BRD,.RC601:=EQ;
BRD.BLA17:=0K; 22D, 20623 265; 'ERD.BLA3):2BM; ' BRD.AC6L]: =BR;
(*BLACK PAUNS "MEXT*)
FOR 1:=4¢ 70 S6 DO ERD,BL1):=BP;

(*EHPTY AIDDLE OF SOARD*)

FOR I:=17 TO 4& 00 CRD,BL1]:=1"T;
(*UHITE PAHNS BEXT®)

FOR 1:=9 TO 16 DO _©nD, P[IJ"”P‘
(*NOW FILL INM “HITES TRACK ROV Iw)

BRD.BC1):=4pR; npo.sczj--nn- npc n[ J:=18; BRD.LL4Y:=1q;
BRD.BLSI:=K: BAD.R[A):=Un: B ?):=tms BPD,R[B):=1R;
(*now SHTIALIZE $TATOS vnéxnaLss i RECORD ERD¥)

WITH BRO O

BEGIN

CHK:=FALSE; 'XR:=FALSE; UKK:=FALSE; '10R;=FALSE;

BKR:=FALSE; BKK:=FALSE; BOR:=FALSE; EP:=0; !

Eﬁr--aerr; JORB: =\'HITE ;

END; (*NEUBRD*)

FUNCTION RANK(SQ:CHSSOR; '!MOSE:PLAYER) : INTEGER:
(#**FUNCTIOM RAMK(SO:CHSSOR: UHOSE:PLAYER) : fHTEGER' *)
(##*THIS ROUTIHE RETURMS THE RA'K OF SQ WITH RESPECT TOW)
(*##xTQ PLAYER ''HOSE*)
VAR!TE"P ¢INTEGER;

BEG

TEMP := (30-1) DIV &;

1F WHOSE UHITE THEN RANK := TENP+1
ELSE RAMK := 8~TEMNP;

EMD: (* A'\K*)

FUNCTIn FIL(SG CHSSOR; YHOSE:PLAYER) : IMEGER;
(#**FUMCTION FIL(SQ:CHSSOR: YHOSE:PLAYER) : INTEGER;  *)
(*#+«THIS POUTIME RETUPNS TRE FILE OF SC ''MENE FILES ARE I'UIFERED®)
(***FROH QUEENS ROOK TO QUEEN'S KHIGHT . TO KIMG'S ROOX U'ITH¥*)
(###1,2..8 PETURI'ED, ALTUOUGHM PLAYER IS HOT USED IT IS PLACED®)
(***Ag A PARAMETER SO THE CALL TO RAMK A!D FIL ARE IDEMTICAL®)

BEG
FIL '= ((SQ ~ 1) nop 8) +1;
END; (*FIL*)

runcrzon TAxbeS(sn1 'oz cvsg R) : REA%;

(*#%FUNCTION TAXIBIS 02:CESSERY s REAL:#)
(t**Tuxs ROUTINE RETUPHS THE TAXIDISTANCE EETUEEN THE®)
(*##*TH0 CHESS SQUARES GIVEN AS PARANETERS*)
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EPBR LEP:=T00;
FUNETI6N ATKDFROMN;

THIS FUNCTIOM EXARNINES THE EOARD B AMD RETURMS A LIST OF ALL
PIECES Of THE EO0ARD THAT ['AY ATTACK SCUARE FR, THE LIST IS
RETUNNED IM FRON~TO-ARRAY FRARY UITH THE NUNEER OF ELENENTS
Iti THE ARRAY USED INDICATED BY ELENMENT FRARYLD],SG. ALL
§§gges WHICH NAY REACH FR ARE INDICATED WITHOUT REGARD TO

*kk)

AR
WRKFRARY : FR ﬁR AY:
1,URKSQ, NOMATKS: INTEGER
§A EATK : BOOLEAN;
(k*x 2 *%)
PROCEDURE ADDATK(PC:CHSHEN);
VAR 1:INTEGER;
BEGIN

FOR I:=1 TO VRKFRARY(DJ.SG DO
IF B[Ugéé?ﬁRYCI] .5@3 = PC THEN

NURATKS: =NUTIATKS+1;

FRARYLMUNATKS], SO: SURKFRARYC]. S6;

FRARY[HUHATKSJ PC:=PC:

IF NOT SAVEATK "THEN SAVEATK:=(10T (PC IN SIDESETCPLYR]))

EM
END; (*ADDATK*)
(%x 2 **)
PROgEggﬁE ADDPAUMNATK(FR:CHSSQR; PC:CHSMEN);

MUDATKS : =HUNATKS+1;

FRARYLLUSATYS QQ’:FR'

FRARYCNUDATKSIPC:=PC}

IF MNOT SAVEATK THEM SAVEATK:=(HOT (PC IN SIDESETIPLYR]));
EMD; (*ADDPAUNATK*)

BEGIH

HURATKS:=0;

SAVEATK := FALS

(xCHECK PAUN ATTACKS FIRST,IGHORE EM PASSENT#)

{3 ((FR nOD_8) <> 0) AND (FR >16) THEN
BLFR=7] = UP THEH

ADDPAUMAT&(FR-?

(FR 10D 8) 1 Afo {FR>16) THEN

f BCFR-9] = up THEN

) ADDPAUHATK (FR-9,1IP) ;

F

\n

FR 1700 8) <> 1) ﬂvo (FR<49) THEN
BCFR+7] = BP THE
ADDPAYHATK (FR+7 BP)'

(FR 0D 8) <> 0) Ai'D (FR<49) THEN

IF BLFR+9) = BP THEM

ADDPAUTIATK (FR+9 ,0P) ;

(*NOW CHECK OTHER PIECESS
(*SINCE LISTI'OVES ACTUALLY LISTS ALL SQUARES REACHADLE®)
(*INCLUDING THOSE COMTAINING PIECES,REGARDLESS QF SIDE OF+)
(*OF TIOSE PIECES OMLY HEED TO LOOK AT OME OF EITHER '/tx)
(*OR BM, \IG OR B3, ETC. ADDITIOMALLY FIND GUEEN ATKS*)
(»BY LOOK1lG AT BESHOPS AtD ROOKS TO SAVE OME EXECUTION*)
(*OF LISTHOVES*)
LISTHNOVES (UM, B, 'RKFRARY, FR);
ADDATK (L") ¢ ﬁwﬁA 1o’
LISTIOVES ({1, B, VIRKFRARY,FR);
ADDATK (V'E) ; ﬁbﬁnTL(ef)' ADDATK(UQ) ADDATK(BQ);
LISTHOVES({ir, B, "BKFRARY,
éggA}K(¥R%- éDﬁATL(B") ADDATK(HQ). ADDATK(BQ) ;

BEGIN (*CHECK POSSIBLE KING ATTACKS*)

(*CAN'T CALL LIST{IOVES BECAUSE IT CALLS KMOVE WHICH®)

cast (*CALLS ATKDFROI*)

1: HRKso--u(rR)-

o = . - N [ 4!‘ LV
2:WRKSQ:=HE(FRY; 1A1S PAGE * e
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(*MOY SEE IF KING UOULD DE _IM CHECK*)
ATKD :=ATKDFRON(E, T E I 00£07.50 J.S0,ATK,PLYR);
IF ATKD THED TOO tToo Cl.802.8C:=CK;
! (*SQUARE KING COULD HAVE [0VED TO S ATTACKEDw)
A (*3Y OPPOMENT'S PIECE IF 8TKD TRUE, SET ITS*)
(*VALUE I TOO ARRAY RETURMED BY KAOVE TO CK*)

(xFOR CHECK*)
EMD;

END;

END ; (*IQVE*)

PROCEDggE LISTH?VES(PC :CHSNMEN; VAR B:B0ARD; VAR TOO:FRTOARRAY;

(Rekk
PROCEDURE LISTIOVES LISTS ALL POSSISLE [OVES FOR CHESS PIECE PC
LOCATED Ot SCUARE FR OF BACPD O ''"ITH THE LIST RETURNED I!MN FRON-TO-
ARRAY TOO. THE P'UNEER QF ELEMENTS IM TOO USED IS INDICATED BY
T00C0).SQ, A PROTECTED FRIEPDLY PIECE'S SQOUARE IS RETURNED AS A
POSSIBLE MOVE SOUARE EVEN THOUGH MOT A LEGAL !1OVE TO FACILITATE
THE SEARCH FOR SUCH SOUARES AND CEMTRALIZE THE COMIOM FUNCTION OF
SQUARE SEACRH IN PROCEDURE LISTIIOVES,

*kk )

BEGIIN

TOOLL].5Q:=

CASE PC cr

YP: UPHOVE(B TOO‘FR)

uM: HIOVE(E, $00,6R);

UB: BIOVE(R,TOOLFR)?

UR: RMOVE(B,TOO, F”);

¥Q: QNOVE(B.TOO.FR

WK: KIOVE(E,TOO, FP GHITE)

BP: BPMAVE(H,T0d

BM: HHMOVE(RD, %00, f?)

BB: BIOVE(B, TOO,FR)*

BR: RMOVE(B,TO00,FR) "

BQ: QMOVE(B,TOO,FR)>

BK: KHOVE(B,TOO FR,ELACK) ;

MT: C*MULL NOVESRETURN 1IR°AS SET ABOVE#)

END; (*CASE*)

END: (%L ISTHOVES*)

PROEEDURE MOVEIT(VAR ERDR:BREREC; FR,TO00:CHSSQR);

k%
PROCEDURE MOVEIT MOVES THE PIECE OM SQAURE FR OF THE CHESS BROARD
BROR.B IN BOARD RECORD ERDR TO SOUARE TOO. ALL STATUS VARTABLES
IN BPDR ARE APPROPRIATELY UPDATED AS IS TIIE PAWM BOARD REPRE~
SENTATION BRDR.PB, 1O cpscrs ARE MADE ON MOVE LEGALITY OR
ACTUAL COMTENTS OF sQ AMD T00

*iek)
VAR I,J:INTEGER;

EGTgORB : PLAYER;
BRDR.BLTO0] := BRDR,.BLFRI];
BROR.BLFRI:=MT;

IF BROR.HORE ="UHITE THEN
BEGIN

BROR.HWORB:=BLACK; (*BLACK TO NOVE MEXTx)
TNORB"UHITE, (*SAVE FACT WHITE JUST HOVED*)

ELSE (*%LACK PIECE JUST MOVED%)

BRDR HORE:=tHITE, (*WHITE TO MOVE NEXT*)
TUORB' BLACK; (*SAVE FACT BLACK JUST HOVED*)

(*UBDAFE CASTLING BOOLEAN FLAGS IN BRDR*)
IF BRDR.BLTO0] I'! LK BR, UK, RD THER
CASE BRCR.BLT00) OF
BK: BROP.CXK := TRUE;
BR: IF (FR=57) THE} BRDR.BOR := TRUE
ELSE IF (FR=64) THEN BROR.BKR := TRUE;

WK:  BRDR.UKK := TRUE
. WR:  IF (FR=1) THEHN DROR.UGR := TRUE
( ELSE IF (FR=8) THEN BROR.WKR := TRUE;
END; (*CASE¥)
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IF ©SQ<>0 THE!N REPEAT
ADDMOVE (8, T00,1!SQ) ;
wsQs=nE (1€ay;
UNTIL (V'S0 = 00708 (TOOLTO0L02.SR1.PC <> NT);
Ws@ := SE(FR):
1F wS0<>0 THER REPEAT
ADDIOVE (B, T00,1SQ) ;
usa := SEfusaf;
IF WSQ <> Q THEM
UNTIL (4SQ=0) OR (TOOLTOOL0].SG).PC <> NT);
WSQ := SY(FR);
IF 4S0<>0 THER REPEAT
Aognovsgatroo 1SQ) ;

W 15
UNTIL (i15020) O {TOOCTOOCOJ.SQJ.PC <> nTY;
USQ s= MUCFR);
IF 1SQ<>D THEN REPEAT
ADDMOVE(B, T00,1S@) ;
usa := mifusal:
UNTIL (S0=0) OR ¢TOOCTOOC0I.S01.PC <> MT);
END; (*BIOVE®)
PRosegOPE RIOVE(VAR B:BOARD; VAR TOO:FRTOARRAY; FR:CHSSQR);
1JSQ; CHSSQR;
BEGIN
\,SQ"'"(FR)
IF 1S0<>0 THEM REPEAT
ADDhOVE( TO? LMSG) ;
¥sQ :=
UNTIL (Hsar 0) 0n’ (TOOCT00CC].5Q1.PC <> NT);
wsa-—E(FR)-
IF 1SQ<>0 THEM REPEAT ,
ADDIIOVE (P, T00,4S0) ;
1sa := e(01sQ
UMTIL (usa= 0) OR (TOOLTO0C01.S01.PC <> MT);
WSQ:=S(FR);
IF 1SQ<>0 THEN PEPEAT
ADDHMOVE(®2,TOO,1SC) ;
usa := scfisq);
UMTIL <0:5e=0) 0R (TOOLTOOLDJ.SQ).PC <> NT);
WSQ:=1(FR);
IF 1'SQ<>0 THE! REPEAT
ADDIOVE (R, T00,4SQ);
HsQ = t(fIsC)?
UNTIL (11SQ=0) OR (TONCTO0L0J.SQ1.PC <> NT);
END; (*RIOVE®)
PROCEg%PE QMOVE(VAR B:BuARD; VAR TOO:FRTOARRAY; FR:CHSSQR);

BNOVE (R, T00,FR);
RMOVE (B, TO0,FR) +
gnp; (x&rovEx) *
PROCEDORE KHOVE(VAP B:BOARD; VAR TOO:FRTOARRAY; FR:CHSSQR;
PLYR
VAR I lRKSO IﬁTEGER'
Tﬁo OLEAN:
ATK FRTOARRA?

BEGIN
FOR é' =1 T0 8 DO

iex
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If urkSa <
BEGIM
ADDMOVE(SB, T00,URKSQ) ;
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ADDHOVE(B,TOO,USQ);

I

E}
END;
END; (#UIP/IOVE+)
PRO&ERURE EPNOVE(VAR E:BOARD; VAR TOO:FRTOARRAY; FR:CHSSQR);

HSG'CHSSQR‘
EGIt

USQ := SUCFR);
IF efusq) <> AT THCM
ADDIOVE(B,T00,1iSQ) ;
WSQ := SE(FRS:
IF ef1s0] <> AT THEN
ADDOVE (B, T0O,1SQ) ;
WSQ := S(FR)~
IF efusol = it THEM
BEGIN
ADDMOVE (S, T00,4SQ) ;
IF FR INC497.563  THEN (*49,.56 1S BLACK PAUN RANK*)
BEGIM
KS@ := S(US
IF efusQ) = f THE
ADDIOVE (B, T0O, uso);
EMD;

END;
END; (*EPHOVE®)
PPOSEDUPE MIOVE(VAR B:BOARD; VAR TOO:FRTOARRAY; FR:CHSSQR);

BEGusu , 1SQ2 : CHSSOR;
IF FR <= 48 THEM WSQ2 := NCMCFR))
ELSE L'SQ2 := O;
IF (gggg >'0) AND (USQ2 < 65) THEM
WSQ := E(USQ2);
ADDMOVE (B TOO uso)
usa := w(lisa
ADDHOVE(B TOO Osa)

é{S((Fk SOD 8) <= 6) OR ((FR MOD 8)<>0) THEN 4SQ2 := ECE(FR))
IF (gsgz >°0) AN (WSQ2 < 65) THEN

WSQ == M(USQ2);
ADDHOVE(B 700, sQ) ;
usQ := s(fisa2y:;
éogrovs(a,roo Lsa);

IF FR $= 17_THEN ¥SQ2 := SCS(FR))
ELSE 4SQ2 := O;:
IF (ggaz >0y AND (WSQ2 < 65) THEN
WsQ := sQ2)
ADDNOVE(B Too Osa),
150 := Y(fisa2f;
ADDHOVE(B TOO ,isQ);

éfsé(ﬁﬁ goo_sg >= 3) OR ((FR MOD 8)=0) THEN USQ2 := W(KCFR))
IF (USQ2 >°0) AMD (USQ2 < 65) THEN

aeexn
wsQ = n(ysa
ADDHOVE(B(TOO Oca),
use := s(N1sa2f;
eoorove<a Too,usa),

END; (*IOVE*)
PROCEDGRE BINOVE(VAR B:BOARD; VAR TOO:FRTOARRAY; FR: CHSSQR) ;

B ¥SG $CHSSQR;
UsQ := NE(FR); ‘
THIS PAGE IS #£21 QUALITY TRACTICABLE
FRoM COrY ¥liuioticw 1y W0
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FUNCTION Y(SQ:CHSSGR ) : CHSSQR;
BEGIN

IF (SQ NOD 8 <> 1) THEM W := SQ-1 ELSE W := 0;
EMD; (» OF Y FOR WEST lOVE*)
FUNCgIg?iﬂw(SQ:CHSSQR ) : CHSSQR;

IF ((53> 1)33”0 (5Q<=56)) AND ((S@ MOD 8) <> 1) THEN
ELSE MY := 0;
END: (* OF M) FOR MORTH UEST MOVE®)
(xxx END OF MOVE FUMCTIONS *%)
(*x%x NOVE POUTINES ##4)
FUNCTInN ATKDFRON(YA2 G:BOARD: FR:CHSSQR; VAR FRARY:FRTOARRAY;
PLAYER) : ROCLEAM; FCRWARD
(*SEE ACTUAL DECLARATION OF ATr6reon FOR DESZRIPTION®)
?POCEDUPE ADD/IOVE(VAR B:BOARD; VAR TOO:FRTOARRAY; SQ:CHSSQR);
[ 3 23
THIS ROUTINE IS USED BY NMOVE PROCEDURES V'YHICH GEMERATE LIST OF
POSSIBLE MOVES FOR CHESS PIECES. IT IS USED TO AOD THE SQUARE
MUMBER OF A POSSIDLE IOVE IN GOARD © TO THE FRO'~TO-ARRAY (FRTCARRAY)
T00. THE POSSICLE POVE_TO EE ADDED IS THE SOUARE FR = MOTE THAT
THE SQUARE HUNBER AU'D THE COMTENTS ARS MEEDED 111 THE LIST AlD COTH
ARE ADDED. IT IS ASSUMED THAT ELENENT TOOCO1.SG CONTATHING THE
MUMBER OF FIELCS IM TOO ALREADY FILLED HAS BEEM INTIALIZED APPRO-
PRIATELY BEFORE THIS Roulzgg IS CALLED.

BEGI!
IF (SQ <> 0) THEN

BEG
TOOEO] $0:=T00L0],SQ+1;
T00L T00L01.5Q J.SQ :
TOO[ TooLCl.Sq 1.PC := B

EMD
END; (*ADD{OVE*)

*)
(hnx

THE FOLLOWIMG ROUTIMES VPMOVE THROUGH XMOVE RETURM A LIST OF POSSIDLE
fIOVES FOR THE PIECE INDICATED RY THE LETTERS PRECEEDING THE VORD MOVE
IN THE PROCEDURE TITLE. (I,E, !PIOVE IS WHITE PAVM [OVE MHILE KNOVE
IS KING 1OVE.) IM EACH CASE COARD B IS THE ROARD OM “MICH NOVES ARE
TO0 EE tADE YHILE TOO IS THE FROI=TO-APPAY THAT “WILL CLHTAIN THE LIST
OF POSSIBLE I'OVES. UPCHN EXIT FROM THE PROCEDURE TOOLOl.SC U'ILL COM-
TAIN THE MUNMRER OF ELETEMTS IM TOOQ FILLED, EVEN THOUGH MOT A LEGAL
MOVE, ALY SQUARE COMTAINING A FRIENDLY PIECE IS ALSO RETURMED IF
IT CAM BE REACHED FRO!U THE PIECE EACH PROCEDUPE IS [IANED AFTER. THIS
IS TO FACILITATE SEARCHING OF PROTECTED FRIE!DLY PIECES AS YELL AS
ATTACKED ENENY PIECES. THE RQUTIMNES ACT AS IF THE PROCEDURE PIECE
IS ACTUALLY LOCATED O!f THE FOARD Ol SCUARE FR EVEM IF OMNE IS !'OT
ACTUALLY LOCATED THERE, THUS YPIOVE CALLED V'ITH FR=9Q GEMERATES ALL
POSSIBLE MOVES OM DOARD B FCR A “MITE PAUN LOCATED Q" SOUARE © EVEN
IF THERE IS 110 SUCH PIECE ON THAT SCUARE, TMIS IS TO FACILITATE
SEARCH FCR POSSIBLE ATTACKS AMD MOVES IMN ALL CIRCUNSTANCES
-==THE ROUTINES ARE NORHALLY ACCESSED VIA THE ROUTINE LISTHOVES

PROCEDURE UPHOVECVAR B: BOARD: VAR TOO:FRTOARRAY; FR:CHSSQR);
WSQ: CHSSAR;
EGIN

WSQ := MU(FR);

IF efusal <> AT THen
ADDMOVE (R, TOO,1/SQ) ;

¥sQ := NECFR 5,

1F efuse) <> AT THEM
Aoo'ovc(n T00,1'86) ;

Wsa := I'(FR)

IF etzscl fir THER

ADDHOVE(B,TOO,'SG)
IF EEI&N £9.2161 THEN  (%9..16 IS WHITE PAUM RANK+*)

WSQ 3= NCKS
1f stuqu nf THEN

YHIS PAGE 10 P0TT AUAITY mmu&
mw&l FiUraitoivm. i R
101
- AT AR "R T s e T e o ’-'w‘-‘ e
- SRROSSS




R s

APPENDIX 2
PASCAL CODE FOR CENTRAL ACCELERATED RELAXATION METHOD
(CARM) AND RELATED ROUTINES
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(xSU+*)

PROGRAH DOCUMENT (INPUT,OUTPUT) ;

THE F ow rc FOUTINES APE ADAPTATIONS OF THE CENT CCELERATED

REL 9&& ; ?%E" ESCRI"E ayY SLAGLE IM THE UIAR (:--y 19?0 ESSUE 213
(o1} nUMI ATIOHS CF THE ACIT (SLAGLE, 1;}2 « THE ROUTINES HAVE EEEM

mv

ADAPTED TO ACT O A FILE OF INEQUALI RATHER THAM A NATRIX OF
INEQUALITIES SO THAT LARGE IUNCERS OF THE!N NAY BE SOLVED SITUILTANEOUSLY
WITHOUT REQUIRING LARGE ANOUMTS OF CORE STORAGE FOR THE ROUTIMNE.

THE ROUTIHES ARE CODED IN PASCAL FOR THE CYBER 174 SERIES AS DOCUNENTED
BY_JENSE!N AMD WIRTH FOR THE CDC6600 (JENSCN, 1979). THE COMNSTANTS AlD
DATA TYPES PRECEEDIN'G THESE POUTIMES LINIT fHE RURER OF INEQUALITIES
T0 RE SOLVED TO 1000, BY CHANGING THE VALUE OF EXTHPATTERMS (EXTE!NDED
NUMBER OF PATTER!NS) THE ROUTINES MAY BT USED TO SOLVE ANY MUNMBER OF
INEQUALITIES, SIMNCE THE INEQUALITIES ARE EXPECTED TO BE OM A FILE.

THE ARNMFILENODE IS A FILE [MODE EXECUTIOM OF THE ACCELERATED RELAXA-
TION ALGORITHNM AS DESCRIBED BY CHAMG (CHAMG, 1971) AND AS ADAPTED RY
HIM FROM NAYS (NMAYS, 1964). SLAGLE'S ADAPTATION MAS !EPELY THE

CEMTERING OF THE SOLUTION FRONM THE ACCELERATED RELAMATION TIETHOD (ARM).

CARNFILEMODE IS FILE MODRE EXECUTION OF CENTRAL ACCLERATED PCLAXATION
gg;ﬂgg égﬁgg). 1T EXECUTES ARMFILEIIODE AMD CEMTERS A SOLUTION IF
CHAMGES TO THE BASIC ROUTINES ARE MOTED.

*)
COMST
(kxx *)
E::f PATTER! WORK CO'ISTANTS *%x) "
NFEATURES = 30; i
NPATTERNS = 100;
EXTMPATTERNS = 1000;
(hkk *)
TYPE
(eak *)

(*xx PATTERN HWORK TYPES %%%)

Ty _1.)

PATVEC = ARRAY[1..MPATTERMNS] OF REAL;
EXTPATVEC = ARRAYL1..EXTMPATTERNS] OF REAL;
FTRVEC = ARRAY [1..MFEATURES] OF REAL;
PATMAT = ARRAY[1..MPATTEPMS] OF FTPVEé
PATFILE = FILE OF FTRVEC;

rarery
RRR "‘)

FUMCTION DOTPROD(VAR VEC TVEC FTRVEC; VAR NCOLS:INTEGER): REAL;
VA%I} s INTEGER; TEMP:REAL

TENP := 0.0;
FOR I:=1 T0 MCOLS DO
TEMP := TEMP + VECCI) * TVECCII;
DOTPROD := TEMP
END; (xDOTPROD*S

(* *)
PROCEDURE ARIFILEMODE (VAR AFILE:PATFILE; VAR MEUC:FTRVEC; MARGIN:REAL;
NROVS: INTEGER; MCOLS:INTEGER; ROESREAL; ITLiM:1I ITEGER;
VAR CONVRGD:ROOLEAR);

AFILE A FILE OF PATTERN VECTORS COMTAINING THE IMEQUALITIES
10 BE SOLVED SINULTAMNEQUS

HEWC = Off INPUT SHOULD COHTAIH THE INITIAL GUESS AT A SoLutlIoOMN

VECTOR FOR THE SYSTE! OF INEQUALITIES CONTAINED OH AFILE; OH

EXIT_FROM POUTINME “ILL CONTAIN SCLUTIO!M V‘CTOQ ACHEIVED UP TQ
POINT OF DEPARTURE, “PICH NAY ON DAY MOT BE A TRUE SQLUTINY

MARGIN = THIS IMPLEVENTATION OF THE ACCELERATED RELAXTION NETHOD
ASSUMES IT IS BEIMG USED FOR PATTER!! RECOGMITION WORK IN UHICH
JHE VECTOR D IN A TIMNES MNEWC = D HAS ELEMEMTS ALL EGUAL_TQ
THE _VALUE NARGIM, THEREFORE MARGIN REPRESENTS OME HALF THE
HIDTH OF A DEAD ZOME TO ©E ESTABLISHED AROUMD A SOLUTIOM
PLANE SEPERATI”G TWO CLASSES CF DATA., THE SQOLUTIOM SEARCHED
FOR REQUIRES EACH PATTERN TIMES C TO BE >= MARGIN

THISPA ™ =" e nmpSRTesRTR
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NROUS = MUMBER OF PATTERMS (IMECUALITIES) O FILE AFILE, THIS
NUMBER WAS A MATURAL £Y-PRODUCT OF THE OROGRAI FRON Y'HICH
THIS ROUTIMNE IS EXTRACTED, A SINPLE "'ODIFICATIOMN OF READING TO
€'0 OF FILE OM READS OF FILE Itt THE ROUTIME FOLLOYWING
WOULC ALLO!) DELETIO!N OF THIS PAQAPNETER

NCOLS = THE NUI'BER OF ELENENTS (COLUNMIS) I EACH INMEQUALITY
CONTAINED Of! AFILE. SINCE PASCAL DOES MOT PERIIT VARIAPLE
DINMENSION ARPAY THIS SHOULD EE THE ACTUAL MUP'EER OF ELETENTS
USED RATHER THA! DECLARED, VALLES ARE EXPECTED TO BE COM=-
TAINED IN ELENENTS 1 THROUGH MCOLS

ROE = THE PROPOPTIONALITY CONSTANT USED ItI THE RELAXTION
SOLUTION ATTE!'PT FOR THE SYSTEM OF IMEQUALITIES, FCR EACH
ROY (RECORD OF AFILE OR IMENUALITY) THE CCRRECTION TO THE
VECTOR € IF IT IS MOT A SOLUTIO! VECTOP FCR A nQ4 IS

NEWC = NEUC + ROE((MARGIM ~ MEUC TIMES IMEQUALITY)/
%aﬁﬁggggDE OF INEGUALITY + 1)) TINES INEQUALITY
SEE CODE BELOV! AMD/OR (CHANG, 1971:223)

ITLIN = THE HAXIhUW YURER OF T1FERATIONS TO BE ATTENPTED IM
TRYING TO FIitD A SOLUTIOMN TO SYSTEN OF INECUALITIES
WHERE A!! ITERATIOM IS DEFINED AS A CONPLETE PASS THROUGH
AFILE USING THE RELAXATIONM 'ETHOD OF MAYS (I'AYS, 1964)
FOLLOYED ©Y THE ACCELERATIO!N SCHEN'E SUGGESTED Y CHANG
(C?fEGE, 1971) UHICH ALSO REQUIRES A CONPLETE PASS THROUGH

CONVERGED = RETUR!IED TRUE IF NEWC IS Al ACTUAL SOLUTION YO
THE SYSTEM OF INEMUALITIES, IF FALSE THAD SEUC IS THE
ATTENPTED SOLUTION THAT EXfSTED AFTER ITLIY PASSES THROUGH

BOTH THE RELAXAT%ON AND ACCELERATION SCHEIES

VAR 1,J,MLANEDAS,R,K,M, STAR,COUNT : IMTEGER
ITéRATIOHS fifeber; (kcounts ITERATIONS PRERIID®)
LAMBDA, TEHPV : REAL;
G, H,Y U, fIORK : EXTPATVEC;
FfrveC;
OLDC : FTRVEC:
R EXTPATVEC

* )
PROCEDUPE EXTBUBLSORT(VAR V1:EXTPATVEC; VAR V2:EXTPATVEC;
INTEGER)

THE ACCELERATIO!N SCHEME OF CHANG IMPLEMEMTED HERE REQUIRES

THE SORTIMG OF VALUES. A BUZBLE SORT IS USED AS A QUICK

EASILY UNDERSTOOD SORT. IF VERY LARGE NUHPERS OF 1neQUACITIES
ARE TO BE SOLVED IT SHOULD BE REPLACED WITH A INORE

EFFICIENT SORT.

CHANGS'S SCHENME REQUIRES SOATIMG OF A SEYT OF VALUES WHICH
EACH HAVE ASSOCIATED UITH THE!! A SECOMD VALUE. THUS THIS
ROUTIMNE SORTS VECTOR V1 IN ASCEMDIMNG SECUEMCE AND ALSO
REARRAMGES VECTOR V2 TO MAINTAIM AM ORDERIMG OF SLEMENTS
PARALLEL UYITH THAT OF V1, M SHOULD ECQUAL THE NUMEBER OF
ELEMENTS IN THE VECTOR V1 TO BE SORTED YHERE ELEMEMTS
532E5§¥50 ARE COMSIDERED TO BE BETWEEN ELEMENMT 1 AMD N

VAR I cnr INTEGER;
TEMP:REA

FLAG: BOOLéAr

BEGIN

CNT:=M:
FLAG:=TRUE;
HHILE FLAG 00

EGIN
cnr- lenT-1;
FLAG:=FALSE;
FOR --1 10 CNT D
IF v1txJ > v1cx+1J THEN

TEHP =V1CI+1]3; v1CI+13:=viC1]; ViCId:=TENP;
TENP:=V2CI+1]; V20I+13:=V2C1]; V2CI):=TENP;
FLAG:=TRUE;
104 AHAS PAGE LD BEoL QAL Lty & & vanieddad
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END
EMD

EMD; (*EMD OF EXTBUBLSORT#)
PAItt BODY OF ARNFILEIODE#«)

, (ad é

A EGIF
£¥iTS secTIon FInDS NAGNITUDES OF ALL POUS IN AFILE®)
(*AND ADDS one TO THEN FOR USE BY RELAXATION PART#*)
RESETC(AFIL
FOR I:=1 TO ﬁnm:s 0o

BEGI
READ(AFILE A)-
WORKL1] :=
FOP J 1 Tb MCOLS D

RI’[IJ 1= UORK[!] + AQJ] »~ ALJD;
uonxcxl += HORKCI] + 1;

€MD ;
ITERATIONS := 0;
COMVRGD : =FAL SE
HHILE (ITERArlbns < ITLIM AND (HOT COMVRGD) DO
(*THIS SECTION PERFOPNS A RELAXATION ALGORITHI OtI*)
(*THE ARRAY A USING VECTORS C AND D TRYING TO SATISFY#)
(*» AC>=D =*)
BEGIN
RESETCAFIL
S*SAVE curr%ﬁr C FOR USE BY ACCELERATION MODE®)
LDC := MEV
(*MODIFIED RELAXATIOM PASS THROUGH ROMS#*)
, oex--1ronoxsoo
BEGIS
EAD(AFILE A);
TERPY := DOTPROC(MEC,A,NCOLS);
IF (TEEEY - PARGIN) < 0’ THER

(*INEQUALITY VIOLATED FOR THIS ROM, CHANGE Cw)
FOR J:=1 TO NCOLS DO MEWCLJY := nfucfyd +
ROE* ( (MARGIN=-TEMNPV) /WORKLIII*ACJ];

0ES PRECALCULATIONS FOR USE BY%)

ND;
(*THIS séc TION D
10M SCHEME®)

(*ACCELERAT
NLALBDAS := 0;
RESET(AFILE);

FOR 1 "1 TO NROWS DO

HC1):=0; A:=0;
ATE RO"(J) TIHES VECTOR C FOR EACH ROW OF A%)
TO MCOLS

= ACJ] » OLDCCJY. + GLIJ;
= AE ) » chJ-OLoctJi) + HCI1J;

LAMBDA VALUE FOR EACH ROY IM WHICH#*)
APD STORE IN VECTOR U V'ITH SIGH OF%)
¥EETOR WHERE 1MEANS>0,-1NEANS<Ow®)

P LR Ire

T

~_0Om ee e =
o-

>

M
MBDA  := «~GCIJ/HW[1];
F LAggg?!> 1 THEN (*OILY SAVE IF > 1%)
NLANSDAS := NLAMBDAS +1;
IF H(13 > 0 THEH
DASJ =1

aCrL
tSE Q(ILAﬁBDASJ := =1;
U l'l. AMBDAS) := LAFBDA;’

HAI—IV

END;

END
(*NEXT SECTION SEES IF COMVERGEMCE CAM BE ACCELERATED®)
(" IF NLSEE?QS <> 0 THEN (#CAN ONLY TRY ACCELERATION WHEN TRUE®)

THIS PaGE 7~
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EXTBUPLSORT(U,Q MLAIEDAS) ; |
LAMBDA:=1; 1

0-
FOR § := 1 10 NROUS D
1f ct 3 + K{1J < 0 THE! f1:=141:
(*coU HTING INEQUAL HRONG WITH HEWCH)

ef1l > THEN R:=R+1;
<f0) AMD (K<HLANBDAS) 00

!
= 1=ROUND(QLK])
IF QLK) = 1 THEM Ri=R-1;
I (UC§]I§> ulK+11) AND (ft < MSTAR) THEN

LANBDA: =(ULK] + UlK+11)/2;
NSTAR := MN;
END;

. -K§1 .

G (a<>05 AND (K=NLENGDAS) THEN

IF 1 < HsTAR THER

LANGDA :=UCKI + 0.1;

IF LAtEDA > 1 THEN

FOR I:='1 10 HCOLS DO
ueeds®. bty +
" LAnBDA # CHEHCLII~OLDCCIT);
r Y

(*hSTAR fs tunBER OF INEQUALITIES STILL WRONG®)
CONVRGD := (NOT_(IISTAR 0))
ITERATIONS := ITERATIOMS + 1;
(xOF UNILE STATHENT*)
END; (*6F ACCELERATED RELAXATION METHOD ARMFILEMNODE*)

(= * )
PROCEDURE CARMFILEIODE(VAR AFILE:PATFILE; MRQUS:INTEGER; NCOLS:INTEGER;
VAR NMEWC:FTRVEC;
MARGIN,ROE REAL' ITLIM:INTEGER; VAR COMNVRGD:BOCLEAN);

(*

THIS ROUTIME IS THE CEMTERED ACCELERATED RELAXATIONM NETHOD OF
SOLVING A SYSTE! OF LINMEAR INECUALITIES. ALL VARIADLE MANES IN
THE PROCEDURE CALL MAVE THE EXACT SAME PURPOSE AS DESCRIBED FOR
THE VARIBLE OF THE SANE MANE IM PROCEDURE ARMFILEMODE WITH THE
FOLLOWING NOTED EXCEPTION

NEWC IS STILL THE INTIAL GUESS AT A SOLUTIOM TO THE SYSTEM OF
LINEAR INEGUALITIES COMTAIMED Off FILE AFILE. IF COMVRGD IS
RETURHED TRUE FROM THE EXECUTION OF ARNFILENODE, MEUC IS

MODIFIED SO THAT 1T 1S CENTERED EETMEEM THE ASSONED

THO CLASSES OF DATA REPRESENTED BY THE LTNEAR INIEQUALITIES

OF AFILE, IT 1S ASSUMED THAT THE LIMEAR INEQUALITIES AQE ACTUALLY
REPRESENTATIONS OF ALGHNENTED PATTER! VECTORS AS DISCRIBE

CHAPTER 4 OF THE THESIS SCDY, SEE THAT CUAPTER AMD/OR (SLACLE 1979
FOR FURTHER EXPLAHATION OF HOu PATTERMS ARE PREPARED FOR LIMEAR
INEQUALITY SOLUT

VAR 1,J : INTEGER
Fnlnosnxn,esuax ¢': REAL;

BEc IA'FTR £C;
ARMFILENODE (AFILE, MEUC, ARG IN NROUS, HCOL ITLI!, CONVRGD) ;
(*READY roa csmrép:re AFTER inxrxa(xz ﬁ VAR*S

IF CONVRGD T
BEGIN (*CEHTER NEUCH)
RESEV(AFILE),
FMIN: =HAXINT; G"IN:=NAXI"T,
FOR I E%ITO NROWS DO

) READUAFILE, )
( e84 529 10 neoLs 00
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En
Eegxn (+burny BODY=*

ESUBI := ESUBI + ALJ] + NENCLJI;
ESUBI := ESUBI - MARGIM;
IF ACNCOLST > o THEM ~ (*PATTERM IN CLASS 1%)
é{sgsuax FMIM THEN FMIN := ESUSI
ELSE C*PATTERN IN CLASS TUO*)
05 IF ESUBI < GMIN THEN GMIN := ESUBI;
* DARGIN / (2+#MARGIM + FIIN + GHIM);
¢=1 TO HCOLS = 1 DO NEVCLJ] ¢ * HENCLYD;
OLS] := (2#HEUCLNCOLS] YGNIN = FRIN % ¢ / 2:
(*OF HCENTER®)
txoF CA$ ;ILEHODE*)

Em.md(.k.ux‘~ . e
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APPENDIX 3
EXAMPLE PARTIAL GAME TREES, TIC-TAC-TOE
(
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The following partial game tree represents the training boards used
- in the attempts to find group and move discriminant functions as
described in Chapter IV. For each level, the move(s) that would lead
to the next lower displayed level of the tree represents the "recommended"
move. On the bottom level those moves which would lead to a win for
the side to move are the recommended moves. For each partial tree, 0 is

to move at the top level, X at the next, etc.
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